
Gaetano Malgieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4344887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural characterization of the thermal unfolding pathway of human VEGFR1 D2 domain. FEBS Journal, 2022, 289, 1591-1602.	2.2	0
2	Host and Viral Zinc-Finger Proteins in COVID-19. International Journal of Molecular Sciences, 2022, 23, 3711.	1.8	8
3	Screening a Molecular Fragment Library to Modulate the PED/PEA15-Phospholipase D1 Interaction in Cellular Lysate Environments. ACS Chemical Biology, 2021, 16, 2798-2807.	1.6	2
4	Pyrazolones Activate the Proteasome by Gating Mechanisms and Protect Neuronal Cells from βâ€Amyloid Toxicity. ChemMedChem, 2020, 15, 302-316.	1.6	15
5	Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario. International Journal of Molecular Sciences, 2020, 21, 8285.	1.8	8
6	The change of conditions does not affect Ros87 downhill folding mechanism. Scientific Reports, 2020, 10, 21067.	1.6	5
7	Structural Insight of the Full-Length Ros Protein: A Prototype of the Prokaryotic Zinc-Finger Family. Scientific Reports, 2020, 10, 9283.	1.6	11
8	12. Zinc Fingers. , 2020, 20, 415-436.		10
9	Polypseudorotaxanes of Pluronic® F127 with Combinations of α- and β-Cyclodextrins for Topical Formulation of Acyclovir. Nanomaterials, 2020, 10, 613.	1.9	19
10	Ubiquitin binds the amyloid \hat{l}^2 peptide and interferes with its clearance pathways. Chemical Science, 2019, 10, 2732-2742.	3.7	46
11	Coordination of a bis-histidine-oligopeptide to Re(<scp>i</scp>) and Ga(<scp>iii</scp>) in aqueous solution. Dalton Transactions, 2019, 48, 15184-15191.	1.6	1
12	The curious case of opossum prion: a physicochemical study on copper(<scp>ii</scp>) binding to the bis-decarepeat fragment from the protein N-terminal domain. Dalton Transactions, 2019, 48, 17533-17543.	1.6	4
13	Ni(II), Hg(II), and Pb(II) Coordination in the Prokaryotic Zinc-Finger Ros87. Inorganic Chemistry, 2019, 58, 1067-1080.	1.9	17
14	Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins. Chemical Science, 2018, 9, 3290-3298.	3.7	18
15	MucR binds multiple target sites in the promoter of its own gene and is a heatâ€stable protein: Is MucR a Hâ€ <scp>NS</scp> â€like protein?. FEBS Open Bio, 2018, 8, 711-718.	1.0	15
16	Deciphering RGDechi peptideâ€Î± 5 β 1 integrin interaction mode in isolated cell membranes. Peptide Science, 2018, 110, e24065.	1.0	7
17	Identifying the region responsible for Brucella abortus MucR higher-order oligomer formation and examining its role in gene regulation. Scientific Reports, 2018, 8, 17238.	1.6	14
18	Structural Characterization of the Lactobacillus Plantarum FlmC Protein Involved in Biofilm Formation. Molecules, 2018, 23, 2252.	1.7	11

GAETANO MALGIERI

#	Article	IF	CITATIONS
19	Ml proteins from Mesorhizobium loti and MucR from Brucella abortus: an AT-rich core DNA-target site and oligomerization ability. Scientific Reports, 2017, 7, 15805.	1.6	13
20	Nociceptin reduces the inflammatory immune microenvironment in a conventional murine model of airway hyperresponsiveness. Clinical and Experimental Allergy, 2017, 47, 208-216.	1.4	10
21	Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy. Bioinorganic Chemistry and Applications, 2017, 2017, 1-7.	1.8	16
22	Alpha- and Beta-Cyclodextrin Inclusion Complexes with 5-Fluorouracil: Characterization and Cytotoxic Activity Evaluation. Molecules, 2016, 21, 1644.	1.7	37
23	A Combined NMR and Computational Approach to Determine the RGDechiâ€hCitâ€h± _v î² ₃ Integrin Recognition Mode in Isolated Cell Membranes. Chemistry - A European Journal, 2016, 22, 681-693.	1.7	23
24	<i>fac</i> â€{Re(H ₂ 0) ₃ (CO) ₃] ⁺ Complexed with Histidine and Imidazole in Aqueous Solution: Speciation, Affinity and Binding Features. ChemistrySelect, 2016, 1, 3739-3744.	0.7	5
25	Ubiquitin Associates with the Nâ€Terminal Domain of Nerve Growth Factor: The Role of Copper(II) Ions. Chemistry - A European Journal, 2016, 22, 17767-17775.	1.7	5
26	The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain. Journal of Inorganic Biochemistry, 2016, 161, 91-98.	1.5	18
27	Cyclodextrins as Complexing Agents: Preparation and Applications. Current Organic Chemistry, 2016, 21, 162-176.	0.9	28
28	Cullin3 - BTB Interface: A Novel Target for Stapled Peptides. PLoS ONE, 2015, 10, e0121149.	1.1	33
29	NMR Structure and Dynamics of the Resuscitation Promoting Factor RpfC Catalytic Domain. PLoS ONE, 2015, 10, e0142807.	1.1	16
30	Investigating the inclusion properties of aromatic amino acids complexing beta-cyclodextrins in model peptides. Amino Acids, 2015, 47, 2215-2227.	1.2	79
31	Towards understanding the molecular recognition process in prokaryotic zinc-finger domain. European Journal of Medicinal Chemistry, 2015, 91, 100-108.	2.6	18
32	Structural Basis of a Temporin 1b Analogue Antimicrobial Activity against Gram Negative Bacteria Determined by CD and NMR Techniques in Cellular Environment. ACS Chemical Biology, 2015, 10, 965-969.	1.6	37
33	The insulin degrading enzyme activates ubiquitin and promotes the formation of K48 and K63 diubiquitin. Chemical Communications, 2015, 51, 15724-15727.	2.2	26
34	The prokaryotic zincâ€finger: structure, function and comparison with the eukaryotic counterpart. FEBS Journal, 2015, 282, 4480-4496.	2.2	51
35	Molecular strategies to replace the structural metal site in the prokaryotic zinc finger domain. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 497-504.	1.1	17
36	Zinc to cadmium replacement in the prokaryotic zinc-finger domain. Metallomics, 2014, 6, 96-104.	1.0	37

#	Article	IF	CITATIONS
37	Deciphering the zinc coordination properties of the prokaryotic zinc finger domain: The solution structure characterization of Ros87 H42A functional mutant. Journal of Inorganic Biochemistry, 2014, 131, 30-36.	1.5	25
38	The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective. Coordination Chemistry Reviews, 2014, 260, 139-155.	9.5	26
39	Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of phospholipase D1 revealed by NMR spectroscopy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1572-1580.	1.1	10
40	Structural Zn(II) Implies a Switch from Fully Cooperative to Partly Downhill Folding in Highly Homologous Proteins. Journal of the American Chemical Society, 2013, 135, 5220-5228.	6.6	41
41	Design, structural and functional characterization of a Temporin-1b analog active against Gram-negative bacteria. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3767-3775.	1.1	50
42	Zinc(II) Interactions with Brain-Derived Neurotrophic Factor N-Terminal Peptide Fragments: Inorganic Features and Biological Perspectives. Inorganic Chemistry, 2013, 52, 11075-11083.	1.9	27
43	An Experimentally Tested Scenario for the Structural Evolution of Eukaryotic Cys2His2 Zinc Fingers from Eubacterial Ros Homologs. Molecular Biology and Evolution, 2013, 30, 1504-1513.	3.5	23
44	β-Cyclodextrin Inclusion Complex to Improve Physicochemical Properties of Pipemidic Acid: Characterization and Bioactivity Evaluation. International Journal of Molecular Sciences, 2013, 14, 13022-13041.	1.8	48
45	Synthesis and Biological Properties of Caffeic Acid-PNA Dimers Containing Guanine. Molecules, 2013, 18, 9147-9162.	1.7	10
46	Probing the Residual Structure in Avian Prion Hexarepeats by CD, NMR and MD Techniques. Molecules, 2013, 18, 11467-11484.	1.7	7
47	Structure and Orientation of the gH625–644 Membrane Interacting Region of Herpes Simplex Virus Type 1 in a Membrane Mimetic System. Biochemistry, 2012, 51, 3121-3128.	1.2	34
48	γ sulphate PNA (PNA S): Highly Selective DNA Binding Molecule Showing Promising Antigene Activity. PLoS ONE, 2012, 7, e35774.	1.1	40
49	Physicochemical Characterization and Cytotoxic Activity Evaluation of Hydroxymethylferrocene:l²-Cyclodextrin Inclusion Complex. Molecules, 2012, 17, 6056-6070.	1.7	26
50	A novel synthetic strategy for monosubstituted cyclodextrin derivatives. Chemical Communications, 2012, 48, 3875.	2.2	17
51	Zinc to cadmium replacement in the <i>A. thaliana</i> SUPERMAN Cys ₂ His ₂ zinc finger induces structural rearrangements of typical DNA base determinant positions. Biopolymers, 2011, 95, 801-810.	1.2	38
52	The Inorganic Perspective of Nerve Growth Factor: Interactions of Cu ²⁺ and Zn ²⁺ with the Nâ€Terminus Fragment of Nerve Growth Factor Encompassing the Recognition Domain of the TrkA Receptor. Chemistry - A European Journal, 2011, 17, 3726-3738.	1.7	52
53	Zinc(II) Complexes of Ubiquitin: Speciation, Affinity and Binding Features. Chemistry - A European Journal, 2011, 17, 11596-11603.	1.7	34
54	NMR assignments of the DNA binding domain of Ml4 protein from Mesorhizobium loti. Biomolecular NMR Assignments, 2010, 4, 55-57.	0.4	12

#	Article	IF	CITATIONS
55	The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6933-6938.	3.3	54
56	Structural effects of Parkinson's disease linked DJâ€1 mutations. Protein Science, 2008, 17, 855-868.	3.1	68
57	The prokaryotic Cys ₂ His ₂ zinc-finger adopts a novel fold as revealed by the NMR structure of <i>Agrobacterium tumefaciens</i> Ros DNA-binding domain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17341-17346.	3.3	47
58	A Novel Type of Zinc Finger DNA Binding Domain in theAgrobacteriumtumefaciensTranscriptional Regulator Rosâ€. Biochemistry, 2006, 45, 10394-10405.	1.2	34