Bo Y Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4344228/publications.pdf

Version: 2024-02-01

658	15	642732
citations	h-index	g-index
50	50	220
docs citations	times ranked	citing authors
	citations 50	658 15 citations h-index 50 50

#	Article	IF	CITATIONS
1	Circularly polarized light-induced potentials and the demise of excited states. Physical Chemistry Chemical Physics, 2022, 24, 2966-2973.	2.8	4
2	Grid-Based Ehrenfest Model To Study Electron–Nuclear Processes. Journal of Physical Chemistry A, 2019, 123, 7171-7176.	2.5	3
3	Control defeasance by anti-alignment in the excited state. Physical Chemistry Chemical Physics, 2019, 21, 23620-23625.	2.8	4
4	Anomalous Rabi Oscillations in Multilevel Quantum Systems. Physical Review Letters, 2018, 120, 133201.	7.8	6
5	Quantum Control in Multilevel Systems. Advances in Atomic, Molecular and Optical Physics, 2018, 67, 151-256.	2.3	21
6	From Rabi oscillations to adiabatic passage in multi-level quantum systems with a train of weak pulses. , 2018, , .		0
7	Geometrical Optimization Approach to Isomerization: Models and Limitations. Journal of Physical Chemistry A, 2017, 121, 8280-8287.	2.5	2
8	Laser control of the RbCs bond. European Physical Journal D, 2017, 71, 1.	1.3	3
9	Molecular events in the light of strong fields: A lightâ€induced potential scenario. International Journal of Quantum Chemistry, 2016, 116, 608-621.	2.0	15
10	Protecting and accelerating adiabatic passage with time-delayed pulse sequences. Physical Chemistry Chemical Physics, 2016, 18, 13443-13448.	2.8	3
11	Nonresonant electronic transitions induced by vibrational motion in light-induced potentials. Physical Chemistry Chemical Physics, 2016, 18, 25265-25270.	2.8	6
12	Oscillating molecular dipoles require strongly correlated electronic and nuclear motion. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 043001.	1.5	14
13	Ultrafast Population Inversion without the Strong Field Catch: The Parallel Transfer. Journal of Physical Chemistry Letters, 2015, 6, 1724-1728.	4.6	9
14	The Hydrogen molecular cation as a molecular antenna. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 174005.	1.5	5
15	"Stirred, Not Shaken― Vibrational Coherence Can Speed Up Electronic Absorption. Journal of Physical Chemistry A, 2015, 119, 9091-9097.	2.5	6
16	State-Selective Excitation of Quantum Systems via Geometrical Optimization. Journal of Chemical Theory and Computation, 2015, 11, 4005-4010.	5.3	7
17	The time-scale of nonlinear events driven by strong fields: can one control the spin coupling before ionization runs over?. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 124027.	1.5	5
18	Laser-assisted ultrafast photoassociation in HeH2+. Chemical Physics, 2014, 442, 18-25.	1.9	2

#	Article	IF	Citations
19	Manipulating the singlet–triplet transition in ion strings by nonresonant dynamic Stark effect. Highlights in Theoretical Chemistry, 2014, , 79-88.	0.0	0
20	Manipulating the singlet $\hat{a} \in \text{``triplet transition in ion strings by nonresonant dynamic Stark effect.}$ Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	4
21	Ultrafast coherent control of giant oscillating molecular dipoles in the presence of static electric fields. Journal of Chemical Physics, 2013, 139, 084306.	3.0	14
22	Twoâ€Pulse Control of Largeâ€Amplitude Vibrations in H ₂ ⁺ . ChemPhysChem, 2013, 14, 1405-1412.	2.1	10
23	Ultrafast Control of the Internuclear Distance with Parabolic Chirped Pulses. Journal of Physical Chemistry A, 2012, 116, 2691-2697.	2.5	21
24	Quantum Wave-Packet Dynamics in Spin-Coupled Vibronic States. Journal of Physical Chemistry A, 2012, 116, 11427-11433.	2.5	14
25	Laser adiabatic manipulation of the bond length of diatomic molecules with a single chirped pulse. Journal of Chemical Physics, 2011, 134, 144303.	3.0	9
26	Bond lengths of diatomic molecules periodically driven by light: The p-LAMB scheme. Journal of Chemical Physics, 2011, 134, 104301.	3.0	11
27	Inducing changes in the bond length of diatomic molecules by time-symmetric chirped pulses. Physical Review A, 2010, 82, .	2.5	19
28	Further aspects on the control of photodissociation in light-induced potentials. Journal of Chemical Physics, 2009, 131, 204314.	3.0	22
29	Bond breaking in light-induced potentials. Journal of Chemical Physics, 2009, 130, 124320.	3.0	21
30	Ultrafast photodissociation assisted by strong non-resonant Stark effect: the †straddling†control pulse. Journal of Modern Optics, 2009, 56, 811-821.	1.3	11
31	Selective photodissociation in diatomic molecules by dynamical Stark-shift control. Journal of Chemical Physics, 2008, 128, 104315.	3.0	16
32	Quantum-state-selective two-photon excitation of multilevel systems assisted by the Stark shift. Physical Review A, 2007, 75, .	2.5	7
33	Raman excitation of rovibrational coherent and incoherent states via adiabatic passage assisted by dynamic Stark effect. Chemical Physics, 2007, 338, 228-236.	1.9	3
34	Squeezing the ground vibrational state of diatomic molecules. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 241-247.	3.9	3
35	Wave-packet squeezing by iterative pump-dump control in diatomic molecules. Physical Review A, 2006, 73, .	2.5	8
36	Adiabatic and diabatic transformations as physical resources for wave packet squeezing. Physical Review A, 2006, 73, .	2.5	6

#	Article	IF	Citations
37	Squeezing Rb2 wave packets with mixed adiabatic and dynamic strategies. , 2006, , 578-582.		О
38	Adiabatic squeezing of molecular wave packets by laser pulses. Journal of Chemical Physics, 2005, 122, 204316.	3.0	18
39	Pump-dump iterative squeezing of vibrational wave packets. Journal of Chemical Physics, 2005, 123, 244101.	3.0	8
40	Stationary molecular wave packets at nonequilibrium nuclear configurations. Journal of Chemical Physics, 2004, 121, 11118.	3.0	18
41	Manipulating bond lengths adiabatically with light. Journal of Chemical Physics, 2003, 119, 10653-10657.	3.0	26
42	Light-induced trapping of molecular wave packets in the continuum. Physical Review A, 2003, 68, .	2.5	36
43	Electronic and vibrational population transfer in diatomic molecules as a function of chirp for different pulse bandwidths. Journal of Chemical Physics, 2003, 118, 6270-6279.	3.0	12
44	Transferring vibrational population between electronic states of diatomic molecules via light-induced-potential shaping. Journal of Chemical Physics, 2001, 114, 8820-8830.	3.0	34
45	Optimizing Raman Ladder Climbing:Â Theory and Application in Na2. Journal of Physical Chemistry A, 2001, 105, 8864-8870.	2.5	7
46	High vibrational excitation and bond breaking by generalized Raman ladder climbing. Chemical Physics Letters, 2001, 341, 373-381.	2.6	6
47	Preparing wave functions by the chirped adiabatic passage scheme in manifolds of levels. Physical Review A, 2001, 64, .	2.5	29
48	Selective excitation of diatomic molecules by chirped laser pulses. Journal of Chemical Physics, 2000, 113, 4901.	3.0	34
49	Selective Excitation of Vibrational States by Shaping of Light-Induced Potentials. Physical Review Letters, 2000, 85, 4241-4244.	7.8	72
50	Coherent population transfer in three-levellesystems by chirped laser pulses: Minimization of the intermediate-level population. Physical Review A, 1999, 59, 4494-4501.	2.5	44