
Ge Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4344149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives. Chemical Reviews, 2021, 121, 6124-6172.	23.0	579
2	Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chemical Engineering Journal, 2019, 356, 641-661.	6.6	459
3	Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy and Environmental Science, 2019, 12, 582-588.	15.6	393
4	High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy, 2018, 44, 345-352.	8.2	264
5	Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review. Nano Energy, 2018, 53, 769-797.	8.2	260
6	Creating Lithiumâ€lon Electrolytes with Biomimetic Ionic Channels in Metal–Organic Frameworks. Advanced Materials, 2018, 30, e1707476.	11.1	230
7	High Energy Storage Density and Large Strain in Bi(Zn _{2/3} Nb _{1/3})O ₃ -Doped BiFeO ₃ –BaTiO ₃ Ceramics. ACS Applied Energy Materials, 2018, 1, 4403-4412.	2.5	229
8	Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy and Environmental Science, 2020, 13, 2938-2948.	15.6	212
9	A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. Journal of Materials Chemistry A, 2015, 3, 17320-17331.	5.2	211
10	Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting. Nano Energy, 2018, 49, 86-94.	8.2	200
11	Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy and Environmental Science, 2020, 13, 4498-4535.	15.6	181
12	Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials. Nano Energy, 2016, 19, 78-87.	8.2	172
13	BiFeO ₃ -BaTiO ₃ : A new generation of lead-free electroceramics. Journal of Advanced Dielectrics, 2018, 08, 1830004.	1.5	166
14	Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications. Nano Energy, 2021, 85, 105948.	8.2	164
15	Carbonâ€Based Composite Phase Change Materials for Thermal Energy Storage, Transfer, and Conversion. Advanced Science, 2021, 8, 2001274.	5.6	162
16	Progress, Outlook, and Challenges in Leadâ€Free Energyâ€&torage Ferroelectrics. Advanced Electronic Materials, 2020, 6, 1900698.	2.6	154
17	Covalently integrated core-shell MOF@COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols. Journal of Energy Chemistry, 2020, 43, 8-15.	7.1	150
18	Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 2021, 11, 9618-9678.	5.5	146

#	Article	IF	CITATIONS
19	High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries. Nature Communications, 2019, 10, 1474.	5.8	140
20	Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity. Applied Energy, 2018, 211, 1203-1215.	5.1	137
21	Constructing a Hetero-interface Composed of Oxygen Vacancy-Enriched Co ₃ O ₄ and Crystalline–Amorphous NiFe-LDH for Oxygen Evolution Reaction. ACS Catalysis, 2021, 11, 14338-14351.	5.5	134
22	Introduction of an organic acid phase changing material into metal–organic frameworks and the study of its thermal properties. Journal of Materials Chemistry A, 2016, 4, 7641-7649.	5.2	132
23	Regenerative Polysulfide-Scavenging Layers Enabling Lithium–Sulfur Batteries with High Energy Density and Prolonged Cycling Life. ACS Nano, 2017, 11, 2697-2705.	7.3	132
24	Synthesis of an amino-functionalized metal–organic framework at a nanoscale level for gold nanoparticle deposition and catalysis. Journal of Materials Chemistry A, 2014, 2, 20588-20596.	5.2	130
25	Novel BaTiO ₃ -Based, Ag/Pd-Compatible Lead-Free Relaxors with Superior Energy Storage Performance. ACS Applied Materials & Interfaces, 2020, 12, 43942-43949.	4.0	130
26	Synthesis and applications of nanoporous perovskite metal oxides. Chemical Science, 2018, 9, 3623-3637.	3.7	129
27	Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light. Applied Catalysis B: Environmental, 2018, 224, 479-487.	10.8	126
28	Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Materials, 2020, 26, 129-137.	9.5	124
29	Fatigue resistant lead-free multilayer ceramic capacitors with ultrahigh energy density. Journal of Materials Chemistry A, 2020, 8, 11414-11423.	5.2	114
30	Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nature Communications, 2020, 11, 5215.	5.8	113
31	Synthesis of porous carbon from cotton using an Mg(OH) ₂ template for form-stabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability. Journal of Materials Chemistry A, 2018, 6, 8969-8977.	5.2	106
32	Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials. Energy Storage Materials, 2019, 18, 349-355.	9.5	105
33	1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage. Applied Energy, 2017, 187, 514-522.	5.1	104
34	Origin of the large electrostrain in BiFeO ₃ -BaTiO ₃ based lead-free ceramics. Journal of Materials Chemistry A, 2019, 7, 21254-21263.	5.2	101
35	General Approach to Well-Defined Perovskite MTiO ₃ (M = Ba, Sr, Ca, and Mg) Nanostructures. Journal of Physical Chemistry C, 2011, 115, 3918-3925.	1.5	96
36	Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coordination Chemistry Reviews, 2022, 450, 214240.	9.5	93

#	Article	IF	CITATIONS
37	Graphene-CoO/PEG composite phase change materials with enhanced solar-to-thermal energy conversion and storage capacity. Composites Science and Technology, 2020, 195, 108197.	3.8	92
38	Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl alcohol). Chemical Engineering Journal, 2020, 397, 125330.	6.6	92
39	Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity. Applied Energy, 2018, 217, 369-376.	5.1	91
40	Hierarchically nanostructured MnCo ₂ O ₄ as active catalysts for the synthesis of N-benzylideneaniline from benzyl alcohol and aniline. Green Chemistry, 2017, 19, 769-777.	4.6	89
41	Synthesis of "graphene-like―mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat. Journal of Materials Chemistry A, 2017, 5, 24321-24328.	5.2	87
42	Smart Utilization of Multifunctional Metal Oxides in Phase Change Materials. Matter, 2020, 3, 708-741.	5.0	87
43	Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Materials, 2019, 18, 280-288.	9.5	86
44	Hierarchical 3D Reduced Graphene Porous-Carbon-Based PCMs for Superior Thermal Energy Storage Performance. ACS Applied Materials & Interfaces, 2018, 10, 32093-32101.	4.0	85
45	Merging metal–organic framework catalysis with organocatalysis: A thiourea functionalized heterogeneous catalyst at the nanoscale. Catalysis Science and Technology, 2014, 4, 925.	2.1	77
46	A sustainable method toward melamine-based conjugated polymer semiconductors for efficient photocatalytic hydrogen production under visible light. Green Chemistry, 2018, 20, 664-670.	4.6	77
47	Efficient molybdenum(<scp>vi</scp>) modified Zr-MOF catalysts for epoxidation of olefins. RSC Advances, 2014, 4, 42977-42982.	1.7	76
48	In Situ-Induced Synthesis of Magnetic Cu-CuFe ₂ O ₄ @HKUST-1 Heterostructures with Enhanced Catalytic Performance for Selective Aerobic Benzylic C–H Oxidation. ACS Catalysis, 2017, 7, 243-249.	5.5	76
49	In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection. Composites Part B: Engineering, 2020, 195, 108072.	5.9	76
50	Deposition and Cyclic Oxidation Behavior of a Protective  ( Mo ,  W  ) Journal of the Electrochemical Society, 1992, 139, 1266-1275.	( Siâ€ 1.3	€‱,âु€‰Geâ€
51	Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity. RSC Advances, 2016, 6, 40106-40114.	1.7	71
52	Three-dimensional rGO@sponge framework/paraffin wax composite shape-stabilized phase change materials for solar-thermal energy conversion and storage. Solar Energy Materials and Solar Cells, 2020, 215, 110600.	3.0	71
53	Enhanced Water Splitting Electrocatalysis over MnCo ₂ O ₄ via Introduction of Suitable Ce Content. ACS Sustainable Chemistry and Engineering, 2019, 7, 1169-1177.	3.2	70
54	Heterogeneous Fe-MIL-101 catalysts for efficient one-pot four-component coupling synthesis of highly substituted pyrroles. New Journal of Chemistry, 2015, 39, 4919-4923.	1.4	67

#	Article	IF	CITATIONS
55	Co(<scp>ii</scp>) complexes loaded into metal–organic frameworks as efficient heterogeneous catalysts for aerobic epoxidation of olefins. Catalysis Science and Technology, 2016, 6, 161-168.	2.1	66
56	Synthesis of a flower-like Zr-based metal–organic framework and study of its catalytic performance in the Mannich reaction. RSC Advances, 2015, 5, 19273-19278.	1.7	61
57	Boosting photocatalytic hydrogen evolution: Orbital redistribution of ultrathin ZnIn2S4 nanosheets via atomic defects. Applied Catalysis B: Environmental, 2022, 305, 121007.	10.8	61
58	Cold sintering of microwave dielectric ceramics and devices. Journal of Materials Research, 2021, 36, 333-349.	1.2	59
59	3D Hydrangea Macrophylla-like Nickel–Vanadium Metal–Organic Frameworks Formed by Self-Assembly of Ultrathin 2D Nanosheets for Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 48495-48510.	4.0	57
60	Phase Change Materials for Electro-Thermal Conversion and Storage: From Fundamental Understanding to Engineering Design. IScience, 2020, 23, 101208.	1.9	55
61	A performance study of enhanced visible-light-driven photocatalysis and magnetical protein separation of multifunctional yolk–shell nanostructures. Journal of Materials Chemistry A, 2013, 1, 10030.	5.2	54
62	Development of a SO ₃ Hâ€Functionalized UiOâ€66 Metal–Organic Framework by Postsynthetic Modification and Studies of Its Catalytic Activities. European Journal of Inorganic Chemistry, 2014, 2014, 4268-4272.	1.0	54
63	Construction of covalently integrated core-shell TiO2 nanobelts@COF hybrids for highly selective oxidation of alcohols under visible light. Applied Surface Science, 2019, 493, 551-560.	3.1	53
64	Oneâ€Pot Preparation of Hierarchical Nanosheetâ€Constructed Fe ₃ O ₄ /MILâ€88B(Fe) Magnetic Microspheres with High Efficiency Photocatalytic Degradation of Dye. ChemCatChem, 2016, 8, 3510-3517.	1.8	52
65	Constructing accelerated charge transfer channels along V-Co-Fe via introduction of V into CoFe-layered double hydroxides for overall water splitting. Applied Catalysis B: Environmental, 2021, 298, 120587.	10.8	52
66	A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials. Materials Today Energy, 2019, 12, 239-249.	2.5	51
67	Review of recent research work on CeO2-based electrocatalysts in liquid-phase electrolytes. Journal of Power Sources, 2020, 480, 229091.	4.0	49
68	Synthesis and Characterization of Paraffin/Metal Organic Gel Derived Porous Carbon/Boron Nitride Composite Phase Change Materials for Thermal Energy Storage. European Journal of Inorganic Chemistry, 2018, 2018, 5167-5175.	1.0	47
69	Effective Encapsulation of Paraffin Wax in Carbon Nanotube Agglomerates for a New Shape-Stabilized Phase Change Material with Enhanced Thermal-Storage Capacity and Stability. Industrial & Engineering Chemistry Research, 2018, 57, 13026-13035.	1.8	47
70	Alkylated Mesoâ€Macroporous Metal–Organic Framework Hollow Tubes as Nanocontainers of Octadecane for Energy Storage and Thermal Regulation. Small, 2018, 14, e1801970.	5.2	46
71	Cold sintered LiMgPO ₄ based composites for low temperature coâ€fired ceramic (LTCC) applications. Journal of the American Ceramic Society, 2020, 103, 6237-6244.	1.9	45
72	Highly dispersed Pt clusters encapsulated in MIL-125-NH2 via in situ auto-reduction method for photocatalytic H2 production under visible light. Nano Research, 2021, 14, 4250-4257.	5.8	43

#	Article	IF	CITATIONS
73	Encapsulation of SnO ₂ nanocrystals into hierarchically porous carbon by melt infiltration for high-performance lithium storage. Journal of Materials Chemistry A, 2016, 4, 18706-18710.	5.2	42
74	The marriage of two-dimensional materials and phase change materials for energy storage, conversion and applications. EnergyChem, 2022, 4, 100071.	10.1	42
75	Synthesis of a Fe ₃ 0 ₄ –CuO@meso-SiO ₂ nanostructure as a magnetically recyclable and efficient catalyst for styrene epoxidation. Catalysis Science and Technology, 2014, 4, 3082-3089.	2.1	41
76	Highly efficient sulfonated-polystyrene–Cu(II)@Cu ₃ (BTC) ₂ core–shell microsphere catalysts for base-free aerobic oxidation of alcohols. Journal of Materials Chemistry A, 2015, 3, 4266-4273.	5.2	41
77	Roadmap on inorganic perovskites for energy applications. JPhys Energy, 2021, 3, 031502.	2.3	40
78	Sub-nano CoO _x attached onto WO ₃ for efficient photocatalytic and photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2017, 5, 24631-24635.	5.2	39
79	Vacuum-Dried Synthesis of Low-Density Hydrophobic Monolithic Bridged Silsesquioxane Aerogels for Oil/Water Separation: Effects of Acid Catalyst and Its Excellent Flexibility. ACS Applied Nano Materials, 2018, 1, 933-939.	2.4	39
80	Particulate Anion Sorbents as Electrolyte Additives for Lithium Batteries. Advanced Functional Materials, 2020, 30, 2003055.	7.8	38
81	Shape‣tabilized Phase Change Materials Based on Stearic Acid and Mesoporous Hollow SiO ₂ Microspheres (SA/SiO ₂) for Thermal Energy Storage. European Journal of Inorganic Chemistry, 2017, 2017, 2138-2143.	1.0	37
82	Design and Synthesis of an Au@MILâ€53(NH ₂) Catalyst for a Oneâ€Pot Aerobic Oxidation/Knoevenagel Condensation Reaction. European Journal of Inorganic Chemistry, 2015, 2015, 5099-5105.	1.0	36
83	One-pot solvothermal synthesis of magnetically separable rGO/MnFe2O4 hybrids as efficient photocatalysts for degradation of MB under visible light. Materials Chemistry and Physics, 2019, 231, 68-74.	2.0	36
84	Large electrostrain in lowâ€ŧemperature sintered NBTâ€BTâ€0.025FN incipient piezoceramics. Journal of the American Ceramic Society, 2020, 103, 3739-3747.	1.9	36
85	SO ₃ H-functionalized metal organic frameworks: an efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Advances, 2016, 6, 35135-35143.	1.7	35
86	Shape-stabilized phase-change materials supported by eggplant-derived porous carbon for efficient solar-to-thermal energy conversion and storage. Sustainable Energy and Fuels, 2020, 4, 1764-1772.	2.5	35
87	Wide-band reflective polarizers from cholesteric liquid crystals with stable optical properties. Journal of Applied Polymer Science, 2007, 105, 2973-2977.	1.3	34
88	Cobalt-tuned nickel phosphide nanoparticles for highly efficient electrocatalysis. Applied Surface Science, 2019, 479, 1254-1261.	3.1	34
89	Carbon inserted defect-rich MoS2â^'X nanosheets@CdSnanospheres for efficient photocatalytic hydrogen evolution under visible light irradiation. Journal of Colloid and Interface Science, 2020, 569, 89-100.	5.0	34
90	A Dual Role of Graphene Oxide Sheet Deposition on Titanate Nanowire Scaffolds for Osteo-implantation: Mechanical Hardener and Surface Activity Regulator. Scientific Reports, 2015, 5, 18266.	1.6	33

#	Article	IF	CITATIONS
91	Metal-Organic Framework-based Phase Change Materials for Thermal Energy Storage. Cell Reports Physical Science, 2020, 1, 100218.	2.8	33
92	Sol–gel synthesis, characterization and catalytic property of silicas modified with oxomolybdenum complexes. Journal of Molecular Catalysis A, 2005, 241, 8-14.	4.8	32
93	Covalent-organic frameworks with keto-enol tautomerism for efficient photocatalytic oxidative coupling of amines to imines under visible light. Science China Chemistry, 2021, 64, 2169-2179.	4.2	32
94	Hierarchical PS/PANI nanostructure supported Cu(<scp>ii</scp>) complexes: facile synthesis and study of catalytic applications in aerobic oxidation. RSC Advances, 2014, 4, 55028-55035.	1.7	31
95	Preparation of hollow multiple-Ag-nanoclustes-C-shell nanostructures and their catalytic properties. Applied Catalysis B: Environmental, 2016, 180, 13-19.	10.8	31
96	3D Self-Supported Porous NiO@NiMoO ₄ Core–Shell Nanosheets for Highly Efficient Oxygen Evolution Reaction. Inorganic Chemistry, 2019, 58, 6758-6764.	1.9	31
97	Thermo-enhanced photocatalytic oxidation of amines to imines over MIL-125-NH ₂ @Ag@COF hybrids under visible light. Nanoscale, 2021, 13, 19671-19681.	2.8	31
98	Controlled Synthesis of 3D Flowerâ€like Ni ₂ P Composed of Mesoporous Nanoplates for Overall Water Splitting. Chemistry - an Asian Journal, 2017, 12, 2956-2961.	1.7	30
99	Hierarchical α-Ni(OH) ₂ Composed of Ultrathin Nanosheets with Controlled Interlayer Distances and Their Enhanced Catalytic Performance. ACS Applied Materials & Interfaces, 2017, 9, 20476-20483.	4.0	29
100	One-pot synthesis of light-driven polymeric composite phase change materials based on N-doped porous carbon for enhanced latent heat storage capacity and thermal conductivity. Solar Energy Materials and Solar Cells, 2018, 179, 392-400.	3.0	29
101	In-situ derived graphene from solid sodium acetate for enhanced photothermal conversion, thermal conductivity, and energy storage capacity of phase change materials. Solar Energy Materials and Solar Cells, 2020, 205, 110269.	3.0	28
102	Top-down synthetic strategies toward single atoms on the rise. Matter, 2022, 5, 788-807.	5.0	28
103	One-step modified method for a highly efficient Au–PANI@TiO ₂ visible-light photocatalyst. New Journal of Chemistry, 2016, 40, 8587-8592.	1.4	27
104	Engineering attractive interaction in ZIF-based phase change materials for boosting electro- and photo- driven thermal energy storage. Chemical Engineering Journal, 2022, 430, 133007.	6.6	27
105	Network Structural CNTs Penetrate Porous Carbon Support for Phaseâ€Change Materials with Enhanced Electroâ€Thermal Performance. Advanced Electronic Materials, 2020, 6, 1901428.	2.6	26
106	Conjugated polymer coated MIL-125(Ti) as an efficient photocatalyst for selective oxidation of benzylic C H bond under visible light. Applied Surface Science, 2021, 555, 149732.	3.1	26
107	Metal-organic framework derived magnetic phase change nanocage for fast-charging solar-thermal energy conversion. Nano Energy, 2022, 99, 107383.	8.2	26
108	Imparting magnetic functionality to iron-based MIL-101 via facile Fe ₃ O ₄ nanoparticle encapsulation: an efficient and recoverable catalyst for aerobic oxidation. RSC Advances, 2015, 5, 78962-78970.	1.7	25

#	Article	IF	CITATIONS
109	Oneâ€Pot Fabrication of Hierarchical Nanosheetâ€Based TiO ₂ –Carbon Hollow Microspheres for Anode Materials of Highâ€Rate Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 6031-6036.	1.7	25
110	Ce _{1â^'<i>x</i>} Cr _{<i>x</i>} O _{2â^'<i>î'</i>} Nanocrystals as Efficient Catalysts for the Selective Oxidation of Cyclohexane to KA Oil at Low Temperature under Ambient Pressure. ChemCatChem, 2018, 10, 1406-1413.	1.8	25
111	In situ semi-sacrificial template-assisted growth of ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Chemical Engineering Journal, 2021, 426, 131348.	6.6	25
112	Cu@Cu ₃ P Core–Shell Nanowires Attached to Nickel Foam as Highâ€Performance Electrocatalysts for the Hydrogen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 1083-1089.	1.7	24
113	Imine-linked micron-network polymers with high polyethylene glycol uptake for shaped-stabilized phase change materials. RSC Advances, 2016, 6, 44807-44813.	1.7	23
114	Porous organic–inorganic hybrid xerogels for stearic acid shape-stabilized phase change materials. New Journal of Chemistry, 2017, 41, 1790-1797.	1.4	22
115	Effect of surface properties of SBA-15 on confined Ag nanomaterials via double solvent technique. Microporous and Mesoporous Materials, 2011, 144, 171-175.	2.2	21
116	Thermal conductivity of silica nanoparticle powder: Measurement and theoretical analysis. European Physical Journal Plus, 2015, 130, 1.	1.2	21
117	Fabrication of hierarchical composite microspheres of copper-doped Fe ₃ O ₄ @P4VP@ZIF-8 and their application in aerobic oxidation. New Journal of Chemistry, 2016, 40, 10127-10135.	1.4	21
118	Nanocrystalline CeO2â~δ coated β-MnO2 nanorods with enhanced oxygen transfer property. Applied Surface Science, 2018, 440, 20-28.	3.1	21
119	Difference between Metal-S and Metal-O Bond Orders: A Descriptor of Oxygen Evolution Activity for Isolated Metal Atom-Doped MoS2 Nanosheets. IScience, 2019, 20, 481-488.	1.9	21
120	Electric fieldâ€induced irreversible relaxor to ferroelectric phase transformations in Na _{0.5} Bi _{0.5} TiO ₃ â€NaNbO ₃ ceramics. Journal of the American Ceramic Society, 2019, 102, 7746-7754.	1.9	20
121	Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 3203-3210.	5.2	20
122	Highâ€energy storage performance in BaTiO3â€based leadâ€free multilayer ceramic capacitors. Journal of Materials Research, 2021, 36, 1285-1294.	1.2	19
123	Encapsulation of lauric acid in reduced graphene-N-doped porous carbon supporting scaffold for multi-functional phase change composites. Renewable Energy, 2021, 170, 661-668.	4.3	18
124	Oriented immobilization of Au nanoparticles on C@P4VP core–shell microspheres and their catalytic performance. New Journal of Chemistry, 2015, 39, 2949-2955.	1.4	17
125	The reinforced photothermal effect of conjugated dye/graphene oxide-based phase change materials: Fluorescence resonance energy transfer and applications in solar-thermal energy storage. Chemical Engineering Journal, 2022, 428, 130605.	6.6	17
126	A Two-Dimensional, Hydrogen-Bond-Cross-Linked Molybdenum(VI) Network Polymer with Catalytic Activity. European Journal of Inorganic Chemistry, 2007, 2007, 1215-1218.	1.0	16

#	Article	IF	CITATIONS
127	NiO promoted CuO–NiO/SBA-15 composites as highly active catalysts for epoxidation of olefins. New Journal of Chemistry, 2016, 40, 8543-8548.	1.4	16
128	Hierarchical nitrogen-doped porous carbon incorporating cobalt nanocrystal sites for nitrophenol reduction. Chemical Engineering Science, 2020, 217, 115525.	1.9	16
129	A fast synthesis of hierarchical yolk–shell copper hydroxysulfates at room temperature with adjustable sizes. CrystEngComm, 2014, 16, 2520.	1.3	14
130	Approaching Theoretical Capacities in Thick Lithium Vanadium Phosphate Electrodes at High Charge/Discharge Rates. ACS Sustainable Chemistry and Engineering, 2018, 6, 15608-15617.	3.2	14
131	Inâ€situ Selfâ€transformation Synthesis of Nâ€doped Carbon Coating Paragenetic Anatase/Rutile Heterostructure with Enhanced Photocatalytic CO ₂ Reduction Activity. ChemCatChem, 2020, 12, 3274-3284.	1.8	14
132	Metalloporphyrin-Decorated Titanium Dioxide Nanosheets for Efficient Photocatalytic Carbon Dioxide Reduction. Inorganic Chemistry, 2021, 60, 18337-18346.	1.9	14
133	Tuning the electronic structure of Co@N–C hybrids <i>via</i> metal-doping for efficient electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 4981-4991.	5.2	13
134	Better lithium-ion storage materials made through hierarchical assemblies of active nanorods and nanocrystals. Journal of Materials Chemistry A, 2014, 2, 17536-17544.	5.2	12
135	Experimental Study on Thermal Conductivity and Hardness of Cu and Ni Nanoparticle Packed Bed for Thermoelectric Application. Nanoscale Research Letters, 2017, 12, 189.	3.1	12
136	Effect of metal species on the morphology of metal (oxides) within mesochannels of SBA-15 via a double-solvent method. Microporous and Mesoporous Materials, 2015, 207, 105-110.	2.2	11
137	Vacuum-dried flexible hydrophobic aerogels using bridged methylsiloxane as reinforcement: performance regulation with alkylorthosilicate or alkyltrimethoxysilane co-precursors. New Journal of Chemistry, 2019, 43, 2204-2212.	1.4	11
138	CeO2-δ -Modified CuFe2 O4 with Enhanced Oxygen Transfer as Efficient Catalysts for Selective Oxidation of Fluorene under Mild Conditions. European Journal of Inorganic Chemistry, 2019, 2019, 91-97.	1.0	11
139	An efficient factor for fast screening of high-performance two-dimensional metal–organic frameworks towards catalyzing the oxygen evolution reaction. Chemical Science, 2022, 13, 4397-4405.	3.7	11
140	Magnetically accelerated thermal energy storage within Fe ₃ O ₄ â€anchored MXeneâ€based phase change materials. Aggregate, 2023, 4, .	5.2	11
141	Two hydrogen-bond-cross-linked molybdenum (VI) network polymers: synthesis, crystal structures and cyclooctene epoxidation with H2O2. Structural Chemistry, 2009, 20, 869-876.	1.0	10
142	Effect of partial substitution of Ca in LaMnO3 on coal catalytic combustion. Journal of Thermal Analysis and Calorimetry, 2013, 112, 719-726.	2.0	10
143	Advanced pressure-upgraded dynamic phase change materials. Joule, 2022, 6, 953-955.	11.7	10
144	Advanced 3D-printed phase change materials. Matter, 2021, 4, 3374-3376.	5.0	9

#	Article	IF	CITATIONS
145	A green epoxidation system with poly(4â€vinylpyridine) microsphereâ€supported molybdenum catalyst. Journal of Polymer Science Part A, 2010, 48, 558-562.	2.5	8
146	Construction of 2D MOFs@reduced Graphene Oxide Nanocomposites with Enhanced Visible Lightâ€induced Fentonâ€like Catalytic Performance by Seeded Growth Strategy. ChemCatChem, 2019, 11, 4411-4419.	1.8	8
147	Synthesis of N-TiO2@NH2-MIL-88(Fe) Core-shell Structure for Efficient Fenton Effect Assisted Methylene Blue Degradation Under Visible Light. Chemical Research in Chinese Universities, 2020, 36, 1068-1075.	1.3	8
148	Synthesis of CoP nanoarrays by morphological engineering for efficient electrochemical hydrogen production. Electrochimica Acta, 2022, 426, 140768.	2.6	8
149	One-step fabrication of 3D hierarchical Ni-incorporated β-Co(OH)2 assembled by 2D center disk and 1D length-tunable brush. RSC Advances, 2013, 3, 2604.	1.7	7
150	Self-templating synthesis of hollow NiFe hydroxide nanospheres for efficient oxygen evolution reaction. Electrochimica Acta, 2020, 357, 136869.	2.6	7
151	Fabrication and Elastic Properties of TiO ₂ Nanohelix Arrays through a Pressure-Induced Hydrothermal Method. ACS Nano, 2021, 15, 14174-14184.	7.3	7
152	Synthesis of defected UIOâ€66 with boosting the catalytic performance via rapid crystallization. Applied Organometallic Chemistry, 2022, 36, .	1.7	7
153	A simple chemical approach to the production of nano-sized crystals of poly(acrylic acid). Polymer International, 2006, 55, 1456-1461.	1.6	6
154	Base-free catalytic aerobic oxidation of mercaptans over MOF-derived Co/CN catalyst with controllable composition and structure. Journal of Colloid and Interface Science, 2022, 607, 1836-1848.	5.0	6
155	Approach Toward Nanoplate Poly(styrene sulfate): Synthesis of Nano-Polymers with Special Morphology by Using LDHs as Template. Journal of Nanoscience and Nanotechnology, 2005, 5, 917-922.	0.9	5
156	Electrically induced and thermally erased properties of sideâ€chain liquid crystalline polymer/liquid crystal/chiral dopant composites. Liquid Crystals, 2007, 34, 949-954.	0.9	5
157	Prediction of Thermal Conductivity of Aluminum Nanocluster-Filled Mesoporous Silica (Al/MCM-41). International Journal of Thermophysics, 2013, 34, 2371-2384.	1.0	5
158	Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material. Nanoscale Research Letters, 2016, 11, 430.	3.1	5
159	HKUST-1 derived Cu@CuO _x /carbon catalyst for base-free aerobic oxidative coupling of benzophenone imine: high catalytic efficiency and excellent regeneration performance. RSC Advances, 2020, 10, 36111-36118.	1.7	5
160	A Self-Standing 3D Heterostructured N-Doped Co ₄ S ₃ /Ni ₃ S ₂ /NF for High-Performance Overall Water Splitting. Journal of the Electrochemical Society, 2021, 168, 076504.	1.3	4
161	Surface Cavity Microenvironments in a Porous Ceramic Radiant Gas Burner. Combustion Science and Technology, 1993, 95, 277-311.	1.2	3
162	Preparation and catalytic application of poly 4â€vinylpyridine microspheres. Journal of Applied Polymer Science, 2010, 116, 3178-3183.	1.3	2

#	Article	IF	CITATIONS
163	Facile Solutionâ€Phase Synthesis of CuInSe ₂ Nanocrystals with Controlled Morphologies. European Journal of Inorganic Chemistry, 2013, 2013, 5906-5910.	1.0	2
164	Cobalt-embedded few-layered carbon nanosheets toward enhanced hydrogen evolution: Rational design and insight into structure-performance correlation. Journal of Energy Chemistry, 2021, 58, 156-161.	7.1	1
165	High-energy storage performance in BaTiO ₃ -based lead-free multilayer ceramic capacitors. Journal of Materials Research, 0, , 1-10.	1.2	Ο