
Gabriela Schaepman-Strub

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4344038/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reflectance quantities in optical remote sensing—definitions and case studies. Remote Sensing of Environment, 2006, 103, 27-42.	11.0	1,142
2	Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 2011, 6, 045509.	5.2	1,021
3	Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences, 2008, 5, 1475-1491.	3.3	630
4	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
5	Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change, 2015, 5, 887-891.	18.8	447
6	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	18.8	447
7	An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Reviews of Geophysics, 2019, 57, 739-799.	23.0	396
8	Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biology, 2010, 16, 1296-1305.	9.5	267
9	What are the main climate drivers for shrub growth in Northeastern Siberian tundra?. Biogeosciences, 2011, 8, 1169-1179.	3.3	147
10	Validation practices for satelliteâ€based Earth observation data across communities. Reviews of Geophysics, 2017, 55, 779-817.	23.0	137
11	The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environmental Research Letters, 2011, 6, 035502.	5.2	126
12	The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site. Ecosystems, 2011, 14, 1055-1065.	3.4	116
13	Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity. International Journal of Applied Earth Observation and Geoinformation, 2007, 9, 1-20.	2.8	109
14	A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sensing of Environment, 2019, 232, 111297.	11.0	108
15	Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10160-10165.	7.1	102
16	Predicting Missing Values in Spatio-Temporal Remote Sensing Data. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 2841-2853.	6.3	89
17	Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia. Journal of Geophysical Research, 2011, 116, .	3.3	66
18	Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Science Advances, 2020, 6, eaax3308.	10.3	62

#	Article	IF	CITATIONS
19	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	5.8	57
20	Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO ₂ measurements. Science Advances, 2018, 4, eaao1167.	10.3	57
21	On Line Validation Exercise (OLIVE): A Web Based Service for the Validation of Medium Resolution Land Products. Application to FAPAR Products. Remote Sensing, 2014, 6, 4190-4216.	4.0	56
22	Predicting habitat quality of protected dry grasslands using Landsat NDVI phenology. Ecological Indicators, 2018, 91, 447-460.	6.3	54
23	Arctic shrub effects on NDVI, summer albedo and soil shading. Remote Sensing of Environment, 2014, 153, 79-89.	11.0	52
24	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
25	Above―and belowâ€ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. Journal of Ecology, 2017, 105, 947-957.	4.0	49
26	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
27	Hierarchical Nuclear and Cytoplasmic Genetic Architectures for Plant Growth and Defense within <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 1929-1945.	6.6	46
28	Genomics meets remote sensing in global change studies: monitoring and predicting phenology, evolution and biodiversity. Current Opinion in Environmental Sustainability, 2017, 29, 177-186.	6.3	42
29	Spectrodirectional remote sensing for the improved estimation of biophysical and -chemical variables: two case studies. International Journal of Applied Earth Observation and Geoinformation, 2005, 6, 271-282.	2.8	39
30	Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental Research Letters, 2021, 16, 015001.	5.2	39
31	Terrestrial land-cover type richness is positively linked to landscape-level functioning. Nature Communications, 2020, 11, 154.	12.8	37
32	Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences, 2016, 13, 4049-4064.	3.3	33
33	Drivers of shortwave radiation fluxes in Arctic tundra across scales. Remote Sensing of Environment, 2017, 193, 86-102.	11.0	31
34	The Nagoya Protocol could backfire on the Global South. Nature Ecology and Evolution, 2018, 2, 917-919.	7.8	31
35	Corrigendum to "Peatlands and the carbon cycle: from local processes to global implications a synthesis" published in Biogeosciences, 5, 1475–1491, 2008. Biogeosciences, 2008, 5, 1739-1739.	3.3	29
36	Assessing and predicting biodiversity in a floodplain ecosystem: Assimilation of net primary production derived from imaging spectrometer data into a dynamic vegetation model. Remote Sensing of Environment, 2008, 112, 2118-2130.	11.0	28

#	Article	IF	CITATIONS
37	Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling. Biogeosciences, 2014, 11, 4651-4664.	3.3	28
38	Evaluation of spectrodirectional alfalfa canopy data acquired during DAISEX'99. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 1034-1042.	6.3	22
39	Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types. Biogeosciences, 2009, 6, 275-284.	3.3	22
40	Impacts of the 2014–2017 global bleaching event on a protected remote atoll in the Western Indian Ocean. Coral Reefs, 2020, 39, 15-26.	2.2	20
41	A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy. Sensors, 2012, 12, 17358-17371.	3.8	19
42	Solar absorption over Europe from collocated surface and satellite observations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3420-3437.	3.3	19
43	Patterns of activity and body temperature of Aldabra giant tortoises in relation to environmental temperature. Ecology and Evolution, 2018, 8, 2108-2121.	1.9	19
44	â€~There are new species': indigenous knowledge of biodiversity change in Arctic Yakutia. Polar Geography, 2019, 42, 34-57.	1.9	19
45	Interactive effects between plant functional types and soil factors on tundra species diversity and community composition. Ecology and Evolution, 2016, 6, 8126-8137.	1.9	17
46	Evaluation of diurnal hyperspectral HDRF data acquired with the RSL field goniometer during the DAISEX'99 campaign. ISPRS Journal of Photogrammetry and Remote Sensing, 2002, 57, 184-193.	11.1	16
47	Impacts of Climate Change and Land Use Changes on Land Surface Radiation and Energy Budgets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3, 219-224.	4.9	16
48	â€~To fish or not to fish?': fishing communities of Arctic Yakutia in the face of environmental change and political transformations. Polar Record, 2017, 53, 289-303.	0.8	16
49	River Floodplain Vegetation Scenario Development Using Imaging Spectroscopy Derived Products as Input Variables in a Dynamic Vegetation Model. Photogrammetric Engineering and Remote Sensing, 2007, 73, 1179-1188.	0.6	15
50	In the land of giants: habitat use and selection of the Aldabra giant tortoise on Aldabra Atoll. Biodiversity and Conservation, 2019, 28, 3183-3198.	2.6	15
51	Spectral Estimation of Soil Properties in Siberian Tundra Soils and Relations with Plant Species Composition. Applied and Environmental Soil Science, 2012, 2012, 1-13.	1.7	13
52	The biogeochemical variability of Arctic thermokarst ponds is reflected by stochastic and nicheâ€driven microbial community assembly processes. Environmental Microbiology, 2020, 22, 4847-4862.	3.8	13
53	Giant tortoise habitats under increasing drought conditions on Aldabra Atoll—Ecological indicators to monitor rainfall anomalies and related vegetation activity. Ecological Indicators, 2017, 80, 354-362.	6.3	12
54	Extent change of protected mangrove forest and its relation to wave power exposure on Aldabra Atoll. Global Ecology and Conservation, 2021, 27, e01564.	2.1	12

#	Article	IF	CITATIONS
55	Quantitative retrieval of biogeophysical characteristics using imaging spectroscopy - a mountain forest case study. Community Ecology, 2004, 5, 93-104.	0.9	12
56	Vegetation Trajectories and Shortwave Radiative Forcing Following Boreal Forest Disturbance in Eastern Siberia. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005395.	3.0	9
57	Metal accumulation and its effect on leaf herbivory in an allopolyploid species Arabidopsis kamchatica inherited from a diploid hyperaccumulator A. halleri. Plant Species Biology, 2021, 36, 208-217.	1.0	9
58	Arctic warming-induced cold damage to East Asian terrestrial ecosystems. Communications Earth & Environment, 2022, 3, .	6.8	8
59	Peatlands and the carbon cycle: From local processes to global implications. Eos, 2007, 88, 295-295.	0.1	6
60	Integrative research efforts at the boundary of biodiversity and global change research. Current Opinion in Environmental Sustainability, 2017, 29, 215-222.	6.3	6
61	Plant trait response of tundra shrubs to permafrost thaw and nutrient addition. Biogeosciences, 2020, 17, 4981-4998.	3.3	6
62	Combined field and laboratory goniometer system - FIGOS and LAGOS. , 0, , .		4
63	Shrub growth rate and bark responses to soil warming and nutrient addition – A dendroecological approach in a field experiment. Dendrochronologia, 2017, 45, 12-22.	2.2	4
64	Cloud effects on atmospheric solar absorption in light of most recent surface and satellite measurements. AIP Conference Proceedings, 2017, , .	0.4	4
65	How does leaf functional diversity affect the light environment in forest canopies? An in-silico biodiversity experiment. Ecological Modelling, 2021, 440, 109394.	2.5	4
66	Integrating Biodiversity, Remote Sensing, and Auxiliary Information for the Study of Ecosystem Functioning and Conservation at Large Spatial Scales. , 2020, , 449-484.		4
67	Whats in a Satellite Albedo Product?. , 2006, , .		3
68	Increasing Arctic Tundra Flooding Threatens Wildlife Habitat and Survival: Impacts on the Critically Endangered Siberian Crane (Grus leucogeranus). Frontiers in Conservation Science, 2022, 3, .	1.9	3
69	Comparison of field and laboratory spectro-directional measurements using a standard artificial target. , 2004, , .		2
70	Correction to "Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia― Journal of Geophysical Research, 2012, 117, .	3.3	1
71	Design of the tundra rainfall experiment (TRainEx) to simulate future summer precipitation scenarios. MethodsX, 2021, 8, 101331.	1.6	1
72	Peatlands and the Carbon Cycle. Bulletin of the Ecological Society of America, 2008, 89, 79-80.	0.2	0