Philip J Rosenfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4343782/publications.pdf

Version: 2024-02-01

199 papers 22,282 citations

13827 67 h-index 9073 144 g-index

204 all docs

204 docs citations

204 times ranked

10276 citing authors

#	Article	IF	CITATIONS
1	Ranibizumab for Neovascular Age-Related Macular Degeneration. New England Journal of Medicine, 2006, 355, 1419-1431.	13.9	5,190
2	An Optical Coherence Tomography-Guided, Variable Dosing Regimen with Intravitreal Ranibizumab (Lucentis) for Neovascular Age-related Macular Degeneration. American Journal of Ophthalmology, 2007, 143, 566-583.e2.	1.7	935
3	A Variable-dosing Regimen with Intravitreal Ranibizumab for Neovascular Age-related Macular Degeneration: Year 2 of the PrONTO Study. American Journal of Ophthalmology, 2009, 148, 43-58.e1.	1.7	818
4	Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Progress in Retinal and Eye Research, 2017, 60, 66-100.	7.3	675
5	Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT. Ophthalmology, 2018, 125, 537-548.	2.5	485
6	SHORT-TERM SAFETY AND EFFICACY OF INTRAVITREAL BEVACIZUMAB (AVASTIN) FOR NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2006, 26, 495-511.	1.0	484
7	Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data. Ophthalmology, 2020, 127, 616-636.	2.5	417
8	NOVEL METHOD FOR ANALYZING SNELLEN VISUAL ACUITY MEASUREMENTS. Retina, 2010, 30, 1046-1050.	1.0	402
9	Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia. Ophthalmology, 2003, 110, 667-673.	2.5	370
10	Ranibizumab for Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2006, 113, 633-642.e4.	2.5	365
11	Vision Loss after Intravitreal Injection of Autologous "Stem Cells―for AMD. New England Journal of Medicine, 2017, 376, 1047-1053.	13.9	356
12	Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression. JAMA Ophthalmology, 2014, 132, 142.	1.4	330
13	Complement C3 Inhibitor Pegcetacoplan for Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 186-195.	2.5	306
14	Effect of lesion size, visual acuity, and lesion composition on visual acuity change with and without verteporfin therapy for choroidal neovascularization secondary to age-related macular degeneration: TAP and VIP report no. 1. American Journal of Ophthalmology, 2003, 136, 407-418.	1.7	278
15	Systemic Complement Inhibition with Eculizumab for Geographic Atrophy in Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 693-701.	2.5	264
16	Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surgery, Lasers and Imaging, 2005, 36, 331-5.	0.5	246
17	Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. Ophthalmology, 2015, 122, 2532-2544.	2.5	244
18	Optical Coherence Tomography Angiography of Asymptomatic Neovascularization in Intermediate Age-Related Macular Degeneration. Ophthalmology, 2016, 123, 1309-1319.	2. 5	230

#	Article	IF	CITATIONS
19	Ranibizumab: Phase III clinical trial results. Ophthalmology Clinics of North America, 2006, 19, 361-72.	1.8	229
20	Characteristics of Patients Losing Vision after 2 Years of Monthly Dosing in the Phase III Ranibizumab Clinical Trials. Ophthalmology, 2011, 118, 523-530.	2.5	228
21	Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. Journal of Biomedical Optics, 2016, 21, 066008.	1.4	225
22	Progression of Geographic Atrophy in Age-Related Macular Degeneration Imaged with Spectral Domain Optical Coherence Tomography. Ophthalmology, 2011, 118, 679-686.	2.5	223
23	Maximum Tolerated Dose of a Humanized Anti–Vascular Endothelial Growth Factor Antibody Fragment for Treating Neovascular Age-Related Macular Degeneration. Ophthalmology, 2005, 112, 1048-1053.e4.	2.5	219
24	A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography. , 2018, 59, 203.		219
25	Photodynamic Therapy of Subfoveal Choroidal Neovascularization With Verteporfin. JAMA Ophthalmology, 2003, 121, 1253.	2.6	215
26	Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD. Ophthalmic Surgery Lasers and Imaging Retina, 2014, 45, 496-505.	0.4	206
27	Systemic Bevacizumab (Avastin) Therapy for Neovascular Age-Related Macular Degeneration. Ophthalmology, 2006, 113, 2002-2011.e2.	2.5	187
28	Swept-Source OCT Angiography of the Retinal Vasculature Using Intensity Differentiation-based Optical Microangiography Algorithms. Ophthalmic Surgery Lasers and Imaging Retina, 2014, 45, 382-389.	0.4	183
29	PHARMACOKINETIC RATIONALE FOR DOSING EVERY 2 WEEKS VERSUS 4 WEEKS WITH INTRAVITREAL RANIBIZUMAB, BEVACIZUMAB, AND AFLIBERCEPT (VASCULAR ENDOTHELIAL GROWTH FACTOR TRAP-EYE). Retina, 2011, Publish Ahead of Print, 434-57.	1.0	181
30	Tolerability and Efficacy of Multiple Escalating Doses of Ranibizumab (Lucentis) for Neovascular Age-Related Macular Degeneration. Ophthalmology, 2006, 113, 623-632.e1.	2.5	180
31	ENDOPHTHALMITIS AFTER INTRAVITREAL ANTI–VASCULAR ENDOTHELIAL GROWTH FACTOR ANTAGONISTS. Retina, 2011, 31, 662-668.	1.0	179
32	Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization., 2017, 58, 1499.		178
33	Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography. Ophthalmology, 2018, 125, 255-266.	2.5	165
34	Imaging Protocols in Clinical Studies in Advanced Age-Related Macular Degeneration. Ophthalmology, 2017, 124, 464-478.	2.5	164
35	Natural History of Drusen Morphology in Age-Related Macular Degeneration Using Spectral Domain Optical Coherence Tomography. Ophthalmology, 2011, 118, 2434-2441.	2.5	154
36	Incomplete Retinal Pigment Epithelial and Outer Retinal Atrophy in Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 394-409.	2.5	153

#	Article	IF	Citations
37	Spectral Domain Optical Coherence Tomography Imaging of Drusen in Nonexudative Age-Related Macular Degeneration. Ophthalmology, 2011, 118, 1373-1379.	2.5	152
38	Acute severe visual acuity decrease after photodynamic therapy with verteporfin: case reports from randomized clinical trials—TAP and VIP report no. 3. American Journal of Ophthalmology, 2004, 137, 683-696.	1.7	144
39	PATHWAY-BASED THERAPIES FOR AGE-RELATED MACULAR DEGENERATION. Retina, 2010, 30, 1350-1367.	1.0	142
40	Square Root Transformation of Geographic Atrophy Area Measurements to Eliminate Dependence of Growth Rates on Baseline Lesion Measurements: A Reanalysis of Age-Related Eye Disease Study Report No. 26. JAMA Ophthalmology, 2013, 131, 110.	1.4	130
41	Progression of Geographic Atrophy in Age-related Macular Degeneration. Ophthalmology, 2018, 125, 1913-1928.	2.5	127
42	Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion. Ophthalmic Surgery, Lasers and Imaging, 2005, 36, 336-9.	0.5	126
43	Pharmacotherapy for Neovascular Age-Related Macular Degeneration: An Analysis of the 100% 2008 Medicare Fee-For-Service Part B Claims File. American Journal of Ophthalmology, 2011, 151, 887-895.e1.	1.7	122
44	Lutein/Zeaxanthin for the Treatment of Age-Related Cataract. JAMA Ophthalmology, 2013, 131, 843.	1.4	119
45	Intravitreal Avastin: The Low Cost Alternative to Lucentis?. American Journal of Ophthalmology, 2006, 142, 141-143.	1.7	117
46	Conbercept for Treatment of Neovascular Age-related Macular Degeneration: Results of the Randomized Phase 3 PHOENIX Study. American Journal of Ophthalmology, 2019, 197, 156-167.	1.7	116
47	SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS CHORIOCAPILLARIS ALTERATIONS IN EYES WITH NASCENT GEOGRAPHIC ATROPHY AND DRUSEN-ASSOCIATED GEOGRAPHIC ATROPHY. Retina, 2016, 36, S2-S11.	1.0	111
48	Antivascular endothelial growth factor therapy for neovascular age-related macular degeneration. Current Opinion in Ophthalmology, 2009, 20, 158-165.	1.3	110
49	Effect of Ciliary Neurotrophic Factor on Retinal Neurodegeneration in Patients with Macular Telangiectasia Type 2. Ophthalmology, 2019, 126, 540-549.	2.5	110
50	Age-dependent Changes in the Macular Choriocapillaris of Normal Eyes Imaged With Swept-Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2019, 200, 110-122.	1.7	108
51	Anti–Vascular Endothelial Growth Factor Agents in the Treatment of Retinal Disease. Ophthalmology, 2016, 123, S78-S88.	2.5	100
52	Emixustat Hydrochloride for Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology, 2018, 125, 1556-1567.	2.5	100
53	Projection Artifact Removal Improves Visualization and Quantitation of Macular Neovascularization Imaged by Optical Coherence Tomography Angiography. Ophthalmology Retina, 2017, 1, 124-136.	1.2	99
54	Automated Quantitation of Choroidal Neovascularization: A Comparison Study Between Spectral-Domain and Swept-Source OCT Angiograms., 2017, 58, 1506.		95

#	Article	IF	Citations
55	Anatomic Clinical Trial Endpoints for Nonexudative Age-Related Macular Degeneration. Ophthalmology, 2016, 123, 1060-1079.	2.5	94
56	Optical Coherence Tomography Angiography of Dry Age-Related Macular Degeneration. Developments in Ophthalmology, 2016, 56, 91-100.	0.1	90
57	Correlations between Choriocapillaris Flow Deficits around Geographic Atrophy and Enlargement Rates Based on Swept-Source OCT Imaging. Ophthalmology Retina, 2019, 3, 478-488.	1.2	90
58	Anti-vascular endothelial growth factor therapy for neovascular ocular diseases other than age-related macular degeneration. Current Opinion in Ophthalmology, 2009, 20, 166-174.	1.3	89
59	Age-Related Changes in Choroidal Thickness and the Volume of Vessels and Stroma Using Swept-Source OCT and Fully Automated Algorithms. Ophthalmology Retina, 2020, 4, 204-215.	1.2	86
60	Comparison of Aflibercept, Bevacizumab, and Ranibizumab for Treatment of Diabetic Macular Edema. JAMA Ophthalmology, 2016, 134, 95.	1.4	84
61	Predicting the Progression of Geographic Atrophy in Age-Related Macular Degeneration With SD-OCT En Face Imaging of the Outer Retina. Ophthalmic Surgery Lasers and Imaging Retina, 2013, 44, 344-359.	0.4	84
62	Change in Drusen Volume as a Novel Clinical Trial Endpoint for the Study of Complement Inhibition in Age-related Macular Degeneration. Ophthalmic Surgery Lasers and Imaging Retina, 2014, 45, 18-31.	0.4	82
63	Photodynamic therapy of subfoveal choroidal neovascularization with verteporfin in the ocular histoplasmosis syndrome. Ophthalmology, 2002, 109, 1499-1505.	2.5	80
64	Registration of OCT fundus images with color fundus photographs based on blood vessel ridges. Optics Express, 2011, 19, 7.	1.7	78
65	Longitudinal Wide-Field Swept-Source OCT Angiography of Neovascularization in Proliferative Diabetic Retinopathy after Panretinal Photocoagulation. Ophthalmology Retina, 2019, 3, 350-361.	1.2	77
66	Photodynamic therapy with verteporfin in ocular histoplasmosis: Uncontrolled, open-label 2-year study. Ophthalmology, 2004, 111, 1725-1733.	2.5	75
67	Age related macular degeneration. BMJ: British Medical Journal, 2010, 340, c981-c981.	2.4	75
68	Management of Submacular Hemorrhage Secondary to Neovascular Age-Related Macular Degeneration With Antiâ€"Vascular Endothelial Growth Factor Monotherapy. American Journal of Ophthalmology, 2013, 155, 1009-1013.	1.7	74
69	Quantification of Choriocapillaris with Phansalkar Local Thresholding: Pitfalls to Avoid. American Journal of Ophthalmology, 2020, 213, 161-176.	1.7	74
70	Bevacizumab versus Ranibizumab for AMD. New England Journal of Medicine, 2011, 364, 1966-1967.	13.9	72
71	Guidelines for Imaging the Choriocapillaris Using OCT Angiography. American Journal of Ophthalmology, 2021, 222, 92-101.	1.7	72
72	Imaging Features Associated with Progression to Geographic Atrophy in Age-Related Macular Degeneration. Ophthalmology Retina, 2021, 5, 855-867.	1.2	70

#	Article	IF	Citations
73	Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography. Quantitative Imaging in Medicine and Surgery, 2018, 8, 658-666.	1.1	69
74	Promising new treatments for neovascular age-related macular degeneration. Expert Opinion on Investigational Drugs, 2006, 15, 779-793.	1.9	68
75	Pseudocystic Foveal Cavitation in Tamoxifen Retinopathy. American Journal of Ophthalmology, 2014, 157, 1291-1298.e3.	1.7	67
76	Spectral Domain Optical Coherence Tomographic Imaging of Geographic Atrophy. Ophthalmic Surgery Lasers and Imaging Retina, 2009, 40, 96-101.	0.4	66
77	Optical Coherence Tomography and the Development of Antiangiogenic Therapies in Neovascular Age-Related Macular Degeneration. , 2016, 57, OCT14.		64
78	Quantification of Choriocapillaris with Optical Coherence Tomography Angiography: A Comparison Study. American Journal of Ophthalmology, 2019, 208, 111-123.	1.7	64
79	Comparison of Geographic Atrophy Measurements from the OCT Fundus Image and the Sub-RPE Slab Image. Ophthalmic Surgery Lasers and Imaging Retina, 2013, 44, 127-132.	0.4	63
80	Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography. American Journal of Ophthalmology, 2019, 207, 110-120.	1.7	59
81	Choroidal Thickness and Choroidal Vessel Density in Nonexudative Age-Related Macular Degeneration Using Swept-Source Optical Coherence Tomography Imaging. , 2016, 57, 6256.		58
82	Appearance of Polypoidal Lesions in Patients With Polypoidal Choroidal Vasculopathy Using Swept-Source Optical Coherence Tomographic Angiography. JAMA Ophthalmology, 2019, 137, 642.	1.4	58
83	Two-Year Risk of Exudation in Eyes with Nonexudative Age-Related Macular Degeneration and Subclinical Neovascularization Detected with Swept Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2019, 208, 1-11.	1.7	57
84	Suspended Scattering Particles in Motion: A Novel Feature of OCT Angiography in Exudative Maculopathies. Ophthalmology Retina, 2018, 2, 694-702.	1.2	56
85	Attenuation correction assisted automatic segmentation for assessing choroidal thickness and vasculature with swept-source OCT. Biomedical Optics Express, 2018, 9, 6067.	1.5	56
86	SAFETY AND EFFICACY OF INTRAVITREAL BEVACIZUMAB (AVASTIN) FOR THE MANAGEMENT OF BRANCH AND HEMIRETINAL VEIN OCCLUSION. Retina, 2009, 29, 913-925.	1.0	54
87	Cataract Surgery in Ranibizumab-Treated Patients With Neovascular Age-Related Macular Degeneration From the Phase 3 ANCHOR and MARINA Trials. American Journal of Ophthalmology, 2011, 152, 793-798.	1.7	54
88	Predictive Value of the OCT Double-Layer Sign for Identifying Subclinical Neovascularization in Age-Related Macular Degeneration. Ophthalmology Retina, 2019, 3, 211-219.	1.2	53
89	Characterizing New-Onset Exudation in the Randomized Phase 2 FILLY Trial of Complement Inhibitor Pegcetacoplan for Geographic Atrophy. Ophthalmology, 2021, 128, 1325-1336.	2.5	52
90	Age-Related Macular Degeneration: Clinical Findings, Histopathology and Imaging Techniques. Developments in Ophthalmology, 2014, 53, 1-32.	0.1	51

#	Article	IF	Citations
91	Structural OCT Signs Suggestive of Subclinical Nonexudative Macular Neovascularization in Eyes with Large Drusen. Ophthalmology, 2020, 127, 637-647.	2.5	48
92	Comparison of Geographic Atrophy Growth Rates Using Different Imaging Modalities in the COMPLETE Study. Ophthalmic Surgery Lasers and Imaging Retina, 2015, 46, 413-422.	0.4	47
93	COMPARISON OF INTRAVITREAL BEVACIZUMAB FOLLOWED BY RANIBIZUMAB FOR THE TREATMENT OF NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2009, 29, 1067-1073.	1.0	45
94	Current Clinical Trials in Dry AMD and the Definition of Appropriate Clinical Outcome Measures. Seminars in Ophthalmology, 2011, 26, 167-180.	0.8	44
95	Towards Treatment of Stargardt Disease: Workshop Organized and Sponsored by the Foundation Fighting Blindness. Translational Vision Science and Technology, 2017, 6, 6.	1.1	44
96	A Randomized Phase 2 Study of an Anti–Amyloid β Monoclonal Antibody in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology Retina, 2018, 2, 1028-1040.	1.2	43
97	Visual Acuity after Cataract Surgery in Patients with Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 1229-1236.	2.5	41
98	Correlations Between Choriocapillaris and Choroidal Measurements and the Growth of Geographic Atrophy Using Swept Source OCT Imaging. American Journal of Ophthalmology, 2021, 224, 321-331.	1.7	40
99	Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration. Ophthalmic Surgery Lasers and Imaging Retina, 2015, 46, 513-521.	0.4	40
100	Treatment of Dry Age-Related Macular Degeneration. Ophthalmic Research, 2014, 52, 107-115.	1.0	39
101	Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers. Scientific Reports, 2020, 10, 15434.	1.6	37
102	En Face Optical Coherence Tomography Imaging for the Detection of Nascent Geographic Atrophy. American Journal of Ophthalmology, 2017, 174, 145-154.	1.7	35
103	Estimating Public and Patient Savings From Basic Research—A Study of Optical Coherence Tomography in Managing Antiangiogenic Therapy. American Journal of Ophthalmology, 2018, 185, 115-122.	1.7	35
104	Retinal Nonperfusion in Proliferative Diabetic Retinopathy Before and After Panretinal Photocoagulation Assessed by Widefield OCT Angiography. American Journal of Ophthalmology, 2020, 213, 177-185.	1.7	35
105	Response to Aflibercept After Frequent Re-treatment With Bevacizumab or Ranibizumab in Eyes With Neovascular AMD. Ophthalmic Surgery Lasers and Imaging Retina, 2014, 45, 526-533.	0.4	34
106	OCT Minimum Intensity as a Predictor of Geographic Atrophy Enlargement., 2014, 55, 792.		34
107	Oral Tyrosine Kinase Inhibitor for Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2017, 135, 761.	1.4	34
108	Nonexudative Macular Neovascularization – A Systematic Review of Prevalence, Natural History, and Recent Insights from OCT Angiography. Ophthalmology Retina, 2020, 4, 651-661.	1.2	34

#	Article	IF	CITATIONS
109	Comparison of Drusen Area Detected by Spectral Domain Optical Coherence Tomography and Color Fundus Imaging., 2013, 54, 2429.		33
110	Estimating Medicare and Patient Savings From the Use of Bevacizumab for the Treatment of Exudative Age-related Macular Degeneration. American Journal of Ophthalmology, 2018, 191, 135-139.	1.7	33
111	QUANTITATIVE CHANGES IN RETINAL PIGMENT EPITHELIAL DETACHMENTS AS A PREDICTOR FOR RETREATMENT WITH ANTI-VEGF THERAPY. Retina, 2013, 33, 459-466.	1.0	32
112	Impact of Baseline Characteristics on Geographic Atrophy Progression in the FILLY Trial Evaluating the Complement C3 Inhibitor Pegcetacoplan. American Journal of Ophthalmology, 2021, 227, 116-124.	1.7	32
113	Medical Consequences of Stopping Anticoagulant Therapy Before Intraocular Surgery or Intravitreal Injections. Retina, 2007, 27, 813-815.	1.0	26
114	Counterfeit Avastin in India: Punish the Criminals, Not the Patients. American Journal of Ophthalmology, 2016, 170, 228-231.	1.7	26
115	Intravitreal conbercept for diabetic macular oedema: 2-year results from a randomised controlled trial and open-label extension study. British Journal of Ophthalmology, 2022, 106, 1436-1443.	2.1	24
116	Widefield En Face Optical Coherence Tomography Imaging of Subretinal Drusenoid Deposits. Ophthalmic Surgery Lasers and Imaging Retina, 2015, 46, 550-559.	0.4	23
117	Change in Drusen Area Over Time Compared Using Spectral-Domain Optical Coherence Tomography and Color Fundus Imaging. , 2014, 55, 7662.		22
118	Interpretation of Subretinal Fluid Using OCT in Intermediate Age-Related Macular Degeneration. Ophthalmology Retina, 2018, 2, 792-802.	1.2	22
119	A Comparison Study of Polypoidal Choroidal Vasculopathy Imaged with Indocyanine Green Angiography and Swept-Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2020, 217, 240-251.	1.7	22
120	Persistent Hypertransmission Defects on En Face OCT Imaging as a Stand-Alone Precursor for the Future Formation of Geographic Atrophy. Ophthalmology Retina, 2021, 5, 1214-1225.	1.2	21
121	Comparison between Widefield En Face Swept-Source OCT and Conventional Multimodal Imaging for the Detection of Reticular Pseudodrusen. Ophthalmology, 2017, 124, 205-214.	2.5	20
122	Lessons from Recent Phase III Trial Failures: Don't Design Phase III Trials Based on Retrospective Subgroup Analyses from Phase II Trials. Ophthalmology, 2018, 125, 1488-1491.	2.5	20
123	Validation of a Novel Automated Algorithm to Measure Drusen Volume and Area Using Swept Source Optical Coherence Tomography Angiography. Translational Vision Science and Technology, 2021, 10, 11.	1.1	20
124	Analyzing Relative Blood Flow Speeds in Choroidal Neovascularization Using Variable Interscan Time Analysis OCT Angiography. Ophthalmology Retina, 2018, 2, 306-319.	1.2	19
125	Quantifying choriocapillaris flow deficits using global and localized thresholding methods: a correlation study. Quantitative Imaging in Medicine and Surgery, 2018, 8, 1102-1112.	1.1	19
126	Correlations Between Different Choriocapillaris Flow Deficit Parameters in Normal Eyes Using Swept Source OCT Angiography. American Journal of Ophthalmology, 2020, 209, 18-26.	1.7	19

#	Article	IF	CITATIONS
127	Persistent Hypertransmission Defects Detected on En Face Swept Source Optical Computed Tomography Images Predict the Formation of Geographic Atrophy in Age-Related Macular Degeneration. American Journal of Ophthalmology, 2022, 237, 58-70.	1.7	19
128	Comparison of Neovascular Lesion Area Measurements From Different Swept-Source OCT Angiographic Scan Patterns in Age-Related Macular Degeneration., 2017, 58, 5098.		18
129	En Face Imaging of Geographic Atrophy Using Different Swept-Source OCT Scan Patterns. Ophthalmology Retina, 2019, 3, 122-132.	1.2	18
130	Verteporfin Photodynamic Therapy of Choroidal Neovascularization Secondary to Ocular Toxoplasmosis. JAMA Ophthalmology, 2006, 124, 741.	2.6	17
131	An Update on the Hemodynamic Model of Age-Related Macular Degeneration. American Journal of Ophthalmology, 2022, 235, 291-299.	1.7	17
132	Optical Coherence Tomography Measurements of the Retinal Pigment Epithelium to Bruch Membrane Thickness Around Geographic Atrophy Correlate With Growth. American Journal of Ophthalmology, 2022, 236, 249-260.	1.7	17
133	Automatic geographic atrophy segmentation using optical attenuation in OCT scans with deep learning. Biomedical Optics Express, 2022, 13, 1328.	1.5	17
134	Longitudinal Angiographic Evidence That Intraretinal Microvascular Abnormalities Can Evolve into Neovascularization. Ophthalmology Retina, 2020, 4, 1146-1150.	1.2	16
135	APEX: a phase II randomised clinical trial evaluating the safety and preliminary efficacy of oral X-82 to treat exudative age-related macular degeneration. British Journal of Ophthalmology, 2021, 105, 716-722.	2.1	16
136	Swept-Source OCT Angiographic Characteristics of Treatment-Na \tilde{A} -ve Nonexudative Macular Neovascularization in AMD Prior to Exudation., 2021, 62, 14.		16
137	Deliberations of an International Panel of Experts on OCT Angiography Nomenclature of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2021, 128, 1109-1112.	2.5	16
138	Choroidal Changes in Eyes With Polypoidal Choroidal Vasculopathy After Anti-VEGF Therapy Imaged With Swept-Source OCT Angiography. , 2021, 62, 5.		16
139	Eliminating Visual Acuity and Dilated Fundus Examinations Improves Cost Efficiency of Performing Optical Coherence Tomogrpahy–Guided Intravitreal Injections. American Journal of Ophthalmology, 2020, 219, 222-230.	1.7	14
140	Choroidal Thickness in Eyes With Central Geographic Atrophy Secondary to Stargardt Disease and Age-Related Macular Degeneration. Ophthalmic Surgery Lasers and Imaging Retina, 2015, 46, 814-822.	0.4	14
141	Diagnosing Persistent Hypertransmission Defects on En Face OCT Imaging of Age-Related Macular Degeneration. Ophthalmology Retina, 2022, 6, 387-397.	1.2	14
142	Multimodal Imaging and En Face OCT Detection of Calcified Drusen in Eyes with Age-Related Macular Degeneration. Ophthalmology Science, 2022, 2, 100162.	1.0	14
143	Validation of a Compensation Strategy Used to Detect Choriocapillaris Flow Deficits Under Drusen With Swept Source OCT Angiography. American Journal of Ophthalmology, 2020, 220, 115-127.	1.7	13
144	Altered Blood Flow in the Ophthalmic and Internal Carotid Arteries in Patients with Age-Related Macular Degeneration Measured Using Noncontrast MR Angiography at 7T. American Journal of Neuroradiology, 2021, 42, 1653-1660.	1.2	13

#	Article	IF	Citations
145	Is This a 737 Max Moment for Brolucizumab?. American Journal of Ophthalmology, 2020, 216, A7-A8.	1.7	13
146	Antiangiogenic Therapy in Neovascular Age-related Macular Degeneration. International Ophthalmology Clinics, 2007, 47, 117-137.	0.3	12
147	Presence or absence of choroidal hyper-transmission by SD-OCT imaging distinguishes inflammatory from neovascular lesions in myopic eyes. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 751-758.	1.0	12
148	When Is Off-Label Drug Use in the Patient's Best Interest?. American Journal of Ophthalmology, 2009, 147, 761-763.	1.7	11
149	Are Dilated Fundus Examinations Needed for OCT-Guided Retreatment of Exudative Age-Related Macular Degeneration?. Ophthalmology Retina, 2020, 4, 141-147.	1.2	11
150	Comparison Between Graders in Detection of Diabetic Neovascularization With Swept Source Optical Coherence Tomography Angiography and Fluorescein Angiography. American Journal of Ophthalmology, 2021, 224, 292-300.	1.7	11
151	Analysis of correlations between local geographic atrophy growth rates and local OCT angiography-measured choriocapillaris flow deficits. Biomedical Optics Express, 2021, 12, 4573.	1.5	11
152	Association Between Growth of Geographic Atrophy and the Complement Factor I Locus. Ophthalmic Surgery Lasers and Imaging Retina, 2015, 46, 772-774.	0.4	11
153	COMPARISON OF 2.5 mg/kg AND 5 mg/kg SYSTEMIC BEVACIZUMAB IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2008, 28, 1375-1386.	1.0	10
154	Preventing the Growth of Geographic Atrophy: An Important Therapeutic Target in Age-Related Macular Degeneration. Ophthalmology, 2018, 125, 794-795.	2.5	10
155	Lessons Learned From Avastin and OCT–The Great, the Good, the Bad, and the Ugly: The LXXV Edward Jackson Memorial Lecture. American Journal of Ophthalmology, 2019, 204, 26-45.	1.7	10
156	Dose-Response Relationship between Intravitreal Injections and Retinal Nerve Fiber Layer Thinning in Age-Related Macular Degeneration. Ophthalmology Retina, 2020, 5, 648-654.	1.2	10
157	Predicting the Onset of Exudation in Treatment-Na \tilde{A} -ve Eyes with Nonexudative Age-Related Macular Degeneration. Ophthalmology Retina, 2022, 6, 1-3.	1.2	10
158	Advanced retinal imaging and applications for clinical practice: A consensus review. Survey of Ophthalmology, 2022, 67, 1373-1390.	1.7	10
159	Warning: Do Not Treat Intermediate AMD with Laser Therapy. Ophthalmology, 2019, 126, 839-840.	2.5	9
160	Depth-resolved visualization and automated quantification of hyperreflective foci on OCT scans using optical attenuation coefficients. Biomedical Optics Express, 2022, 13, 4175.	1.5	9
161	Verteporfin Therapy of Subfoveal Occult Choroidal Neovascularization in AMD Using Delayed Light Application: One-year Results of the VALIO Study. American Journal of Ophthalmology, 2007, 144, 970-972.e4.	1.7	8
162	Interocular asymmetry of choroidal thickness and vascularity index measurements in normal eyes assessed by swept-source optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2022, 12, 781-795.	1.1	8

#	Article	IF	CITATIONS
163	LONGITUDINAL ANALYSIS OF DIABETIC CHOROIDOPATHY IN PROLIFERATIVE DIABETIC RETINOPATHY TREATED WITH PANRETINAL PHOTOCOAGULATION USING WIDEFIELD SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY. Retina, 2022, 42, 417-425.	1.0	8
164	Wide field swept source OCT angiography in acute syphilitic placoid chorioretinitis. American Journal of Ophthalmology Case Reports, 2020, 18, 100678.	0.4	7
165	Widefield en face optical coherence tomography monitoring of the peri-venular fern-like pattern of paracentral acute middle maculopathy. American Journal of Ophthalmology Case Reports, 2021, 22, 101047.	0.4	7
166	WIDE-FIELD SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF DIABETIC TRACTIONAL RETINAL DETACHMENTS BEFORE AND AFTER SURGICAL REPAIR. Retina, 2021, 41, 1587-1596.	1.0	7
167	Verteporfin Therapy for CNV Secondary to OHSâŽ. Ophthalmology, 2006, 113, 2371.e1-2371.e3.	2.5	6
168	Strategies for Following Dry Age-Related Macular Degeneration. Ophthalmic Research, 2012, 48, 6-10.	1.0	6
169	Type 2 choroidal neovascularisation in polypoidal choroidal vasculopathy: a retrospective case series. British Journal of Ophthalmology, 2018, 102, 1570-1574.	2.1	6
170	Replacement of polyps with type 1 macular neovascularization in polypoidal choroidal vasculopathy imaged with swept source OCT angiography. American Journal of Ophthalmology Case Reports, 2021, 22, 101057.	0.4	6
171	Anatomic Localization of Type 1 and Type 2 Macular Neovascularization Using Swept-Source OCT Angiography. Ophthalmic Surgery Lasers and Imaging Retina, 2018, 49, 878-886.	0.4	6
172	Local Geographic Atrophy Growth Rates Not Influenced by Close Proximity to Non-Exudative Type 1 Macular Neovascularization. , 2022, 63, 20.		6
173	Pharmacotherapy of Age-Related Macular Degeneration. , 2013, , 1213-1255.		5
174	A2E Distribution in RPE Granules in Human Eyes. Molecules, 2020, 25, 1413.	1.7	5
175	A Novel Method to Detect and Monitor Retinal Vasculitis Using Swept-Source OCT Angiography. Ophthalmology Retina, 2021, 5, 1226-1234.	1.2	5
176	Growth Modeling for Quantitative, Spatially Resolved Geographic Atrophy Lesion Kinetics. Translational Vision Science and Technology, 2021, 10, 26.	1.1	5
177	Developing a potential retinal OCT biomarker for local growth of geographic atrophy. Biomedical Optics Express, 2020, 11, 5181.	1.5	5
178	Mitigating the effects of choroidal hyper- and hypo-transmission defects on choroidal vascularity index assessments using optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2932-2946.	1.1	5
179	Swept-Source OCT Angiography Identifies Choroidal Neovascularization Arising From a Choroidal Nevus. Ophthalmic Surgery Lasers and Imaging Retina, 2018, 49, 360-363.	0.4	4
180	Anti–Vascular Endothelial Growth Factor Therapy for Choroidal Rupture-Associated Choroidal Neovascularization. Ophthalmology Retina, 2020, 4, 226-228.	1.2	4

#	Article	IF	CITATIONS
181	Wide field swept source OCT angiography of multifocal retinal and choroidal occlusions from embolic triamcinolone acetonide. American Journal of Ophthalmology Case Reports, 2020, 18, 100704.	0.4	4
182	Reply to Comment on: Is this a 737 Max Moment for Brolucizumab?. American Journal of Ophthalmology, 2021, 223, 446-447.	1.7	4
183	Impact of Cataract Surgery on Low Luminance Visual Acuity Deficit Measurements. Ophthalmology Science, 2022, 2, 100170.	1.0	4
184	Detection of Nonexudative Macular Neovascularization on Structural Optical Coherence Tomography Images using Vision Transformers. Ophthalmology Science, 2022, , 100197.	1.0	4
185	Oral Tyrosine Kinase Inhibitors for Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2019, 137, 854.	1.4	3
186	Longitudinal Swept-Source OCT Angiography of Juxtapapillary Retinal Capillary Hemangioblastoma. Ophthalmology Retina, 2020, 4, 956-958.	1.2	3
187	Swept-Source Optical Coherence Tomography Detection of Bruch's Membrane and Choriocapillaris Abnormalities in Sorsby Macular Dystrophy. Retina, 2022, Publish Ahead of Print, .	1.0	3
188	Review of Emerging Treatments for Age-Related Macular Degeneration. , 2012, , 1-46.		2
189	Comparing Accuracies of Length-Type Geographic Atrophy Growth Rate Metrics Using Atrophy-Front Growth Modeling. Ophthalmology Science, 2022, 2, 100156.	1.0	2
190	Swept-Source OCT Imaging of the Argus II Epiretinal Prosthesis. Ophthalmology Retina, 2018, 2, 380-382.	1.2	1
191	Widefield Swept-Source Optical Coherence Tomography Angiography of a "Polypoidal-Like―Retinal Arteriovenous Anastomosis in Proliferative Diabetic Retinopathy. JAMA Ophthalmology, 2021, 139, e213859.	1.4	1
192	Laser-induced choroidal neovascularization detected on optical coherence tomography angiography in patients with diabetic retinopathy. American Journal of Ophthalmology Case Reports, 2022, 25, 101316.	0.4	1
193	Management of Neovascular AMD. , 2011, , 79-98.		0
194	Treatment of Geographic Atrophy: What's on the Horizon?. Current Ophthalmology Reports, 2014, 2, 20-25.	0.5	0
195	Reply. Ophthalmology, 2019, 126, e32-e33.	2.5	0
196	Reply. Ophthalmology Retina, 2020, 4, e11-e12.	1.2	0
197	Reply. Ophthalmology, 2020, 127, e26.	2.5	0
198	Comment on "Outer Retinal Layer Thickening Predicts the Onset of Exudative Neovascular Age-Related Macular Degeneration― American Journal of Ophthalmology, 2021, , .	1.7	0

ARTICLE IF CITATIONS

Author Response: Local Geographic Atrophy Growth Rates Not Influenced by Close Proximity to Non-Exudative Type 1 Macular Neovascularization., 2022, 63, 11.