
Yukio Tosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4343256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of durability of blast resistance gene Rmg8 in common wheat based on analyses of its corresponding avirulence gene. Journal of General Plant Pathology, 2021, 87, 1-8.	0.6	3
2	Suppression of wheat blast resistance by an effector of Pyricularia oryzae is counteracted by a host specificity resistance gene in wheat. New Phytologist, 2021, 229, 488-500.	3.5	13
3	Origin of host-specificity resistance genes of common wheat against non-adapted pathotypes of Pyricularia oryzae inferred from D-genome diversity in synthetic hexaploid wheat lines. Journal of General Plant Pathology, 2021, 87, 201-208.	0.6	1
4	Origin and dynamics of Rwt6, a wheat gene for resistance to non-adapted pathotypes of Pyricularia oryzae. Phytopathology, 2021, , PHYTO02210080R.	1.1	0
5	Correlation of Genomic Compartments with Contrastive Modes of Functional Losses of Host Specificity Determinants During Pathotype Differentiation inÂPyricularia oryzae. Molecular Plant-Microbe Interactions, 2021, 34, MPMI-12-20-0339.	1.4	4
6	Toward development of resistant lines against a transboundary plant disease: wheat blast. Journal of General Plant Pathology, 2021, 87, 394-397.	0.6	2
7	At Least Five Major Genes Are Involved in the Avirulence of an Eleusine Isolate of Pyricularia oryzae on Common Wheat. Phytopathology, 2020, 110, 465-471.	1.1	11
8	Evolution of an <i>Eleusine</i> -Specific Subgroup of <i>Pyricularia oryzae</i> Through a Gain of an Avirulence Gene. Molecular Plant-Microbe Interactions, 2020, 33, 153-165.	1.4	16
9	Effectiveness of the Wheat Blast Resistance Gene <i>Rmg8</i> in Bangladesh Suggested by Distribution of an <i>AVR-Rmg8</i> Allele in the <i>Pyricularia oryzae</i> Population. Phytopathology, 2020, 110, 1802-1807.	1.1	8
10	Blast Fungal Genomes Show Frequent Chromosomal Changes, Gene Gains and Losses, and Effector Gene Turnover. Molecular Biology and Evolution, 2019, 36, 1148-1161.	3.5	42
11	<i>Pyricularia graminisâ€ŧritici </i> is not the correct species name for the wheat blast fungus: response to Ceresini <i>etÂal</i> . (MPP 20:2). Molecular Plant Pathology, 2019, 20, 173-179.	2.0	42
12	<i>Rmg8</i> and <i>Rmg7</i> , wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene <i>AVRâ€Rmg8</i> . Molecular Plant Pathology, 2018, 19, 1252-1256.	2.0	57
13	A New Resistance Gene in Combination with <i>Rmg8</i> Confers Strong Resistance Against <i>Triticum</i> Isolates of <i>Pyricularia oryzae</i> in a Common Wheat Landrace. Phytopathology, 2018, 108, 1299-1306.	1.1	50
14	Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science, 2017, 357, 80-83.	6.0	260
15	Generic names in Magnaporthales. IMA Fungus, 2016, 7, 155-159.	1.7	98
16	Genetic analysis of the resistance of barley to cryptic species of Pyricularia. Journal of General Plant Pathology, 2016, 82, 302-306.	0.6	2
17	Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics, 2016, 17, 370.	1.2	157
18	Genetic and molecular analyses of the incompatibility between Lolium isolates of Pyricularia oryzae and wheat. Physiological and Molecular Plant Pathology, 2016, 95, 84-86.	1.3	11

ΥUKIO TOSA

#	Article	IF	CITATIONS
19	Rmg8, a New Gene for Resistance to Triticum Isolates of Pyricularia oryzae in Hexaploid Wheat. Phytopathology, 2015, 105, 1568-1572.	1.1	71
20	<i>Rmg7</i> , a New Gene for Resistance to <i>Triticum</i> Isolates of <i>Pyricularia oryzae</i> Identified in Tetraploid Wheat. Phytopathology, 2015, 105, 495-499.	1.1	66
21	Accelerated Senescence and Enhanced Disease Resistance in Hybrid Chlorosis Lines Derived from Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii. PLoS ONE, 2015, 10, e0121583.	1.1	20
22	Various species of Pyricularia constitute a robust clade distinct from Magnaporthe salvinii and its relatives in Magnaporthaceae. Journal of General Plant Pathology, 2014, 80, 66-72.	0.6	31
23	Genetic analysis of host–pathogen incompatibility between Lolium isolates of Pyricularia oryzae and wheat. Journal of General Plant Pathology, 2014, 80, 59-65.	0.6	40
24	Classification and parasitic specialization of blast fungi. Journal of General Plant Pathology, 2014, 80, 202-209.	0.6	33
25	Identification of a Hidden Resistance Gene in Tetraploid Wheat Using Laboratory Strains of <i>Pyricularia oryzae</i> Produced by Backcrossing. Phytopathology, 2014, 104, 634-640.	1.1	14
26	Identification of a Novel Locus <i>Rmo2</i> Conditioning Resistance in Barley to Host-Specific Subgroups of <i>Magnaporthe oryzae</i> . Phytopathology, 2012, 102, 674-682.	1.1	10
27	Characterization of interactions between barley and various host-specific subgroups of Magnaporthe oryzae and M. grisea. Journal of General Plant Pathology, 2012, 78, 237-246.	0.6	30
28	Instability of subtelomeric regions during meiosis in Magnaporthe oryzae. Journal of General Plant Pathology, 2011, 77, 317-325.	0.6	25
29	Studying genome-wide DNA polymorphisms to understand Magnaporthe-rice interactions. Australasian Plant Pathology, 2011, 40, 328-334.	0.5	3
30	Multiple Translocation of the AVR-Pita Effector Gene among Chromosomes of the Rice Blast Fungus Magnaporthe oryzae and Related Species. PLoS Pathogens, 2011, 7, e1002147.	2.1	229
31	Evolution of the <i>Eleusine</i> Subgroup of <i>Pyricularia oryzae</i> Inferred from Rearrangement at the <i>Pwl1</i> Locus (Retracted). Molecular Plant-Microbe Interactions, 2010, 23, 771-783.	1.4	1
32	<i>PWT1</i> , an Avirulence Gene of <i>Magnaporthe oryzae</i> Tightly Linked to the rDNA Locus, Is Recognized by Two Staple Crops, Common Wheat and Barley. Phytopathology, 2010, 100, 436-443.	1.1	8
33	Association Genetics Reveals Three Novel Avirulence Genes from the Rice Blast Fungal Pathogen <i>Magnaporthe oryzae</i> Â Â. Plant Cell, 2009, 21, 1573-1591.	3.1	410
34	Population structure of Eleusine isolates of Pyricularia oryzae and its evolutionary implications. Journal of General Plant Pathology, 2009, 75, 173-180.	0.6	14
35	Cytological characteristics of microconidia of Magnaporthe oryzae. Journal of General Plant Pathology, 2009, 75, 353-358.	0.6	13
36	Genetic analysis of the species-specific parasitism of plant pathogenic fungi. Journal of General Plant Pathology, 2009, 75, 455-457.	0.6	1

Υυκιο ΤοςΑ

#	Article	lF	CITATIONS
37	Taxonomic characterization of Pyricularia isolates from green foxtail and giant foxtail, wild foxtails in Japan. Journal of General Plant Pathology, 2008, 74, 230-241.	0.6	12
38	An avirulence gene to rice cultivar K60 is located on the 1.6-Mb chromosome in Magnaporthe oryzae isolate 84R-62B. Journal of General Plant Pathology, 2008, 74, 250-253.	0.6	1
39	Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycological Research, 2007, 111, 799-808.	2.5	70
40	Rwt4, a wheat gene for resistance to Avena isolates of Magnaporthe oryzae, functions as a gene for resistance to Panicum isolates in Japan. Journal of General Plant Pathology, 2007, 73, 22-28.	0.6	5
41	Reduction in aggressiveness among hybrids between host-specific pathotypes of Magnaporthe oryzae is caused by reduced ability to overcome adult resistance at the level of penetration. Journal of General Plant Pathology, 2006, 72, 284-291.	0.6	7
42	Evolution of an Avirulence Gene, AVR1-CO39, Concomitant with the Evolution and Differentiation of Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 2005, 18, 1148-1160.	1.4	63
43	Nitric oxide-overproducing transformants of Pseudomonas fluorescens with enhanced biocontrol of tomato bacterial wilt. Journal of General Plant Pathology, 2005, 71, 33-38.	0.6	19
44	Significance of PWT4–Rwt4 interaction in the species specificity of Avena isolates of Magnaporthe oryzae on wheat. Journal of General Plant Pathology, 2005, 71, 340-344.	0.6	11
45	Two phases of intracellular reactive oxygen species production during victorin-induced cell death in oats. Journal of General Plant Pathology, 2005, 71, 387-394.	0.6	17
46	Role of induced resistance in interactions of Epilachna vigintioctopunctata with host and non-host plant species. Plant Science, 2005, 168, 1477-1485.	1.7	12
47	Rapid detection of chitosanase activity in chitosanase gene-transformed strains of Enterobacter cloacae by lytic infection of specific bacteriophages. Journal of General Plant Pathology, 2003, 69, 131-137.	0.6	0
48	RNA Silencing in the Phytopathogenic Fungus Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 2003, 16, 769-776.	1.4	168
49	Analysis of the Structure of the AVR1-CO39 Avirulence Locus in Virulent Rice-Infecting Isolates of Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2002, 15, 6-16.	1.4	138
50	Oat Retrotransposon OARE-1 Is Activated in Both Compatible and Incompatible Interactions with Pathogenic Fungi. Journal of General Plant Pathology, 2002, 68, 8-14.	0.6	2
51	Repeat-induced point mutation (RIP) in Magnaporthe grisea: implications for its sexual cycle in the natural field context. Molecular Microbiology, 2002, 45, 1355-1364.	1.2	112
52	Involvement of gacA Gene in the Suppression of Tomato Bacterial Wilt by Pseudomonas fluorescens FPT9601. Journal of General Plant Pathology, 2001, 67, 134-143.	0.6	5
53	Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats. Plant Journal, 2001, 28, 13-26.	2.8	83
54	Pathogenicity, Mating Ability and DNA Restriction Fragment Length Polymorphisms of Pyricularia Populations Isolated from Gramineae, Bambusideae and Zingiberaceae Plants. Journal of General Plant Pathology, 2000, 66, 30-47.	0.6	177

Υυκιο ΤοςΑ

#	Article	IF	CITATIONS
55	Signal Mediators for Phytoalexin Production in Defense Response of Oats Elicited by Victorin as a Specific Elicitor. Journal of General Plant Pathology, 2000, 66, 185-190.	0.6	5
56	Molecular Analysis of the Wheat Blast Population in Brazil with a Homolog of Retrotransposon MGR583 Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1999, 65, 429-436.	0.1	70
57	Population Structure of the Rice Blast Pathogen in Vietnam Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1999, 65, 475-479.	0.1	14
58	Transposition of the Retrotransposon MAGGY in Heterologous Species of Filamentous Fungi. Genetics, 1999, 153, 693-703.	1.2	83
59	Population Structure of the Rice Blast Fungus in Japan Examined by DNA Fingerprinting Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1999, 65, 15-24.	0.1	32
60	Genetic Diversity in Pyricularia Isolates from Various Hosts Revealed by Polymorphisms of Nuclear Ribosomal DNA and the Distribution of the MAGGY Retrotransposon Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1999, 65, 588-596.	0.1	11
61	Natural Infection of Wild Grass Species with Rice Blast Fungus Suggested by DNA Fingerprinting Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1998, 64, 125-128.	0.1	10
62	Distribution of Retrotransposon MAGGY in Pyricularia Species Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1995, 61, 549-554.	0.1	25