Anand R Nair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4343091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective activation of angiotensin <scp>AT</scp> ₂ receptors attenuates progression of pulmonary hypertension and inhibits cardiopulmonary fibrosis. British Journal of Pharmacology, 2015, 172, 2219-2231.	5.4	75
2	Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder. Behavioural Brain Research, 2014, 268, 72-80.	2.2	68
3	Aerobic training normalizes autonomic dysfunction, HMGB1 content, microglia activation and inflammation in hypothalamic paraventricular nucleus of SHR. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1115-H1122.	3.2	63
4	(Pro)renin Receptor Mediates Both Angiotensin II-Dependent and -Independent Oxidative Stress in Neuronal Cells. PLoS ONE, 2013, 8, e58339.	2.5	63
5	Angiotensin II-induced hypertensive renal inflammation is mediated through HMGB1-TLR4 signaling in rat tubulo-epithelial cells. Experimental Cell Research, 2015, 335, 238-247.	2.6	60
6	Role of TLR4 in lipopolysaccharide-induced acute kidney injury: Protection by blueberry. Free Radical Biology and Medicine, 2014, 71, 16-25.	2.9	58
7	Toll-Like Receptor 4 Promotes Autonomic Dysfunction, Inflammation and Microglia Activation in the Hypothalamic Paraventricular Nucleus: Role of Endoplasmic Reticulum Stress. PLoS ONE, 2015, 10, e0122850.	2.5	57
8	Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight, 2018, 3, .	5.0	55
9	A Blueberry-Enriched Diet Improves Renal Function and Reduces Oxidative Stress in Metabolic Syndrome Animals: Potential Mechanism of TLR4-MAPK Signaling Pathway. PLoS ONE, 2014, 9, e111976.	2.5	43
10	The Anti-Inflammatory Effects of Blueberries in an Animal Model of Post-Traumatic Stress Disorder (PTSD). PLoS ONE, 2016, 11, e0160923.	2.5	42
11	Differential effects of sertraline in a predator exposure animal model of post-traumatic stress disorder. Frontiers in Behavioral Neuroscience, 2014, 8, 256.	2.0	41
12	Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food and Function, 2017, 8, 4118-4128.	4.6	38
13	RhoBTB1 protects against hypertension and arterial stiffness by restraining phosphodiesterase 5 activity. Journal of Clinical Investigation, 2019, 129, 2318-2332.	8.2	32
14	Conditional deletion of smooth muscle Cullin-3 causes severe progressive hypertension. JCI Insight, 2019, 4, .	5.0	24
15	Failure to vasodilate in response to salt loading blunts renal blood flow and causes salt-sensitive hypertension. Cardiovascular Research, 2021, 117, 308-319.	3.8	20
16	Endothelial PPARγ (Peroxisome Proliferator–Activated Receptor-γ) Protects From Angiotensin Il–Induced Endothelial Dysfunction in Adult Offspring Born From Pregnancies Complicated by Hypertension. Hypertension, 2019, 74, 173-183.	2.7	18
17	Interference With Endothelial PPAR (Peroxisome Proliferator–Activated Receptor)-γ Causes Accelerated Cerebral Vascular Dysfunction in Response to Endogenous Renin-Angiotensin System Activation. Hypertension, 2018, 72, 1227-1235.	2.7	17
18	Increased Susceptibility of Mice Lacking Renin-b to Angiotensin Il–Induced Organ Damage. Hypertension, 2020, 76, 468-477.	2.7	8

Anand R Nair

#	Article	IF	CITATIONS
19	Myocardial Infarction and the Fine Balance of Iron. JACC Basic To Translational Science, 2021, 6, 581-583.	4.1	2
20	Reperfused hemorrhagic myocardial infarction in rats. PLoS ONE, 2020, 15, e0243207.	2.5	2
21	Inflammation, oxidative stress, and neuroprotective factors in the pathophysiology of PTSD in an an animal model. FASEB Journal, 2013, 27, 691.5.	0.5	1
22	Abstract MP14: Endothelial Cullin3 Mutation Causes Decreased Nitric Oxide (NO) Bioavailability And Vascular Dysfunction Through Protein Phosphatase 2A. Hypertension, 2021, 78, .	2.7	0
23	Blueberry treatment improves renal function and reduces oxidative stress in Metabolic Syndrome animals – Role of Tollâ€like receptor 4 (TLR4). FASEB Journal, 2013, 27, 955.16.	0.5	0
24	NLRP3 Inflammasome is activated in the kidneys of Metabolic Syndrome animals. FASEB Journal, 2013, 27, 917.5.	0.5	0
25	Abstract P205: Endothelium-specific Interference with PPARG Causes Cerebral Vascular Dysfunction in Response to Endogenous Renin-angiotensin System Activation. Hypertension, 2016, 68, .	2.7	0
26	Abstract P158: Cullin3 Regulated Endothelial Function by Modulating eNOS Activity. Hypertension, 2016, 68, .	2.7	0
27	Abstract 053: RhoBTB1 is a Novel Gene Protecting Against Hypertension. Hypertension, 2016, 68, .	2.7	0
28	Abstract P264: Endothelial-specific Interference With PPARÎ ³ Activity in Offspring Born From AVP-induced Preeclamptic Pregnancies Has Cardio-renal and Metabolic Consequences. Hypertension, 2017, 70, .	2.7	0
29	Abstract 062: Vascular Dysfunction and Hypertension are Prevented by a Novel PPARÎ ³ Target Gene, RhoBTB1. Hypertension, 2017, 70, .	2.7	0
30	Abstract 099: Smooth Muscle PPARÎ ³ Mutation Causes Salt-sensitive Hypertension. Hypertension, 2017, 70, .	2.7	0
31	Endogenous Reninâ€Angiotensin System Activation Causes Accelerated Cerebral Vascular Dysfunction in Mice Expressing Dominantâ€Negative Mutations in PPARγ in Endothelium. FASEB Journal, 2018, 32, 711.13.	0.5	0
32	High Mobility Group Box 1 Neutralization in the Brain Prevents Inflammation, Sympathoexcitation and Hypertension. FASEB Journal, 2018, 32, 599.2.	0.5	0
33	Cardiovascular Effects of Endothelialâ€Specific Interference with PPARγ Activity in Offspring Born from AVPâ€induced Preeclamptic Pregnancies. FASEB Journal, 2018, 32, 911.5.	0.5	0
34	Smooth Muscle Cullinâ€3 Deficiency Causes Vascular Dysfunction, Arterial Stiffness and Severe Hypertension. FASEB Journal, 2018, 32, 843.15.	0.5	0
35	Abstract 133: Endothelial-Specific Interference With PPARÎ ³ Increases the Susceptibility to Angiotensin II-Induced Endothelial Dysfunction in Adult Offspring Born from AVP-Infused Pregnancies. Hypertension, 2018, 72, .	2.7	0
36	Abstract 036: Interference With PPARÎ ³ in the Endothelium Produces Endothelial Dysfunction in the Cerebral Circulation in Response to Activation of the Endogenous Renin-Angiotensin System. Hypertension, 2018, 72, .	2.7	0

ANAND R NAIR

#	Article	IF	CITATIONS
37	Abstract 110: Vascular Smooth Muscle RhoBTB1 Protects From Hypertension and Arterial Stiffness by Cullin-3 Dependent Ubiquitination of Phosphodiesterase 5. Hypertension, 2018, 72, .	2.7	0
38	Abstract 094: Smooth Muscle PPARÎ ³ Mutation Causes Impaired Renal Blood Flow and Salt-Sensitive Hypertension, Hypertension, 2018, 72, .	2.7	0
39	Endothelialâ€Specific Interference with PPARγ Causes Endothelial Dysfunction with Sexâ€-Specific Mechanisms in Offspring Born from AVPâ€infused Pregnancies. FASEB Journal, 2019, 33, 758.3.	0.5	0
40	PPARÎ ³ Target Gene Retinol Binding Protein 7 (RBP7) Protects Against Endothelial Dysfunction Induced by Mitochondrial Uncoupling. FASEB Journal, 2019, 33, 527.14.	0.5	0
41	Protective Role of Vascular Smooth Muscle RhoBTB1 in Hypertension. FASEB Journal, 2019, 33, 835.19.	0.5	0
42	Abstract 120: Protective Role of Vascular Smooth Muscle Rho-Related BTB Domain Containing Protein 1 in Hypertension and Arterial Stiffness. Hypertension, 2019, 74, .	2.7	0
43	Abstract 065: Endothelial CULLIN3 Mutation Causes Vascular Dysfunction, Arterial Stiffening, and Hypertension. Hypertension, 2019, 74, .	2.7	0
44	Abstract P183: Retinol Binding Protein 7, a PPARÎ ³ Target Gene Protects Against Endothelial Dysfunction Induced by Mitochondrial Uncoupling. Hypertension, 2019, 74, .	2.7	0
45	A Rodent Model of Reperfused Hemorrhagic Myocardial Infarction. FASEB Journal, 2020, 34, 1-1.	0.5	0
46	Abstract P086: Endothelial Cullin3 Mutation Causes Vascular Dysfunction, Arterial Stiffening, And Hypertension. Hypertension, 2020, 76, .	2.7	0