
Danica GaloniÄ**‡**ujimori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4343008/publications.pdf Version: 2024-02-01

ΠΑΝΙCA GALONIĆ ΕΙΙΙΜΟΡΙ

#	Article	IF	CITATIONS
1	Non-Heme Fe(Ⅳ)–Oxo Intermediates. Accounts of Chemical Research, 2007, 40, 484-492.	15.6	866
2	Halogenation Strategies In Natural Product Biosynthesis. Chemistry and Biology, 2008, 15, 99-109.	6.0	312
3	RlmN and Cfr are Radical SAM Enzymes Involved in Methylation of Ribosomal RNA. Journal of the American Chemical Society, 2010, 132, 3953-3964.	13.7	146
4	Cloning and characterization of the biosynthetic gene cluster for kutznerides. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16498-16503.	7.1	144
5	Spectroscopic Evidence for a High-Spin Br-Fe(IV)-Oxo Intermediate in the α-Ketoglutarate-Dependent Halogenase CytC3 from <i>Streptomyces</i> . Journal of the American Chemical Society, 2007, 129, 13408-13409.	13.7	140
6	Functional coupling between writers, erasers and readers of histone and DNA methylation. Current Opinion in Structural Biology, 2015, 35, 68-75.	5.7	131
7	Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism. Nature Communications, 2015, 6, 6204.	12.8	99
8	RNA methylation by Radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3930-3934.	7.1	96
9	What's new in enzymatic halogenations. Current Opinion in Chemical Biology, 2007, 11, 553-560.	6.1	91
10	CD and MCD of CytC3 and Taurine Dioxygenase:  Role of the Facial Triad in α-KG-Dependent Oxygenases. Journal of the American Chemical Society, 2007, 129, 14224-14231.	13.7	86
11	Structural Analysis of an Open Active Site Conformation of Nonheme Iron Halogenase CytC3. Journal of the American Chemical Society, 2009, 131, 4872-4879.	13.7	76
12	Radical SAM-mediated methylation reactions. Current Opinion in Chemical Biology, 2013, 17, 597-604.	6.1	52
13	Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes. Journal of the American Society for Mass Spectrometry, 2015, 26, 2141-2151.	2.8	49
14	Docking and Linking of Fragments To Discover Jumonji Histone Demethylase Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 1580-1598.	6.4	43
15	Site-Specific and Regiospecific Installation of Methylarginine Analogues into Recombinant Histones and Insights into Effector Protein Binding. Journal of the American Chemical Society, 2013, 135, 2879-2882.	13.7	42
16	Covalent Intermediate in the Catalytic Mechanism of the Radical <i>S</i> -Adenosyl- <scp> </scp> -methionine Methyl Synthase RlmN Trapped by Mutagenesis. Journal of the American Chemical Society, 2012, 134, 18074-18081.	13.7	40
17	Histone H3 binding to the PHD1 domain of histone demethylase KDM5A enables active site remodeling. Nature Communications, 2019, 10, 94.	12.8	38
18	<i>cfr</i> (B), <i>cfr</i> (C), and a New <i>cfr</i> -Like Gene, <i>cfr</i> (E), in Clostridium difficile Strains Recovered across Latin America. Antimicrobial Agents and Chemotherapy, 2019, 64, .	3.2	37

Danica Galonić Fujimori

#	Article	IF	CITATIONS
19	Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme. Nucleic Acids Research, 2016, 44, 8897-8907.	14.5	36
20	Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics. Nature Structural and Molecular Biology, 2022, 29, 162-171.	8.2	31
21	Opposing Chromatin Signals Direct and Regulate the Activity of Lysine Demethylase 4C (KDM4C). Journal of Biological Chemistry, 2016, 291, 6060-6070.	3.4	28
22	The Chemistry of Peptidyltransferase Center-Targeted Antibiotics: Enzymatic Resistance and Approaches to Countering Resistance. ACS Chemical Biology, 2012, 7, 64-72.	3.4	27
23	Reconstitution of Nucleosome Demethylation and Catalytic Properties of a Jumonji Histone Demethylase. Chemistry and Biology, 2013, 20, 494-499.	6.0	27
24	Htm1p–Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4015-24.	7.1	26
25	Protein and nucleic acid methylating enzymes: mechanisms and regulation. Current Opinion in Chemical Biology, 2012, 16, 507-515.	6.1	25
26	Radical SAM-Mediated Methylation of Ribosomal RNA. Methods in Enzymology, 2015, 560, 355-376.	1.0	22
27	Assessment of the nucleotide modifications in the high-resolution cryo-electron microscopy structure of the Escherichia coli 50S subunit. Nucleic Acids Research, 2020, 48, 2723-2732.	14.5	22
28	Mutations in RNA methylating enzymes in disease. Current Opinion in Chemical Biology, 2017, 41, 20-27.	6.1	18
29	Extended Recognition of the Histone H3 Tail by Histone Demethylase KDM5A. Biochemistry, 2020, 59, 647-651.	2.5	17
30	Covalent labeling of a chromatin reader domain using proximity-reactive cyclic peptides. Chemical Science, 2022, 13, 6599-6609.	7.4	15
31	miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes. Journal of the American Chemical Society, 2018, 140, 7135-7143.	13.7	11
32	Recognition of Histone H3 Methylation States by the PHD1 Domain of Histone Demethylase KDM5A. ACS Chemical Biology, 2023, 18, 1915-1925.	3.4	10
33	Directed evolution of the rRNA methylating enzyme Cfr reveals molecular basis of antibiotic resistance. ELife, 2022, 11, .	6.0	10
34	Domain cross-talk in regulation of histone modifications: Molecular mechanisms and targeting opportunities. Current Opinion in Chemical Biology, 2020, 57, 105-113.	6.1	9
35	Determinants of tRNA Recognition by the Radical SAM Enzyme RlmN. PLoS ONE, 2016, 11, e0167298.	2.5	5
36	Exploring the Ligand Preferences of the PHD1 Domain of Histone Demethylase KDM5A Reveals Tolerance for Modifications of the Q5 Residue of Histone 3. ACS Chemical Biology, 2021, 16, 205-213.	3.4	4

#	Article	IF	CITATIONS
37	miCLIP-MaPseq Identifies Substrates of Radical SAM RNA-Methylating Enzyme Using Mechanistic Cross-Linking and Mismatch Profiling. Methods in Molecular Biology, 2021, 2298, 105-122.	0.9	2
38	Hypoxia sensing goes gauche. Nature Chemical Biology, 2009, 5, 202-203.	8.0	1
39	Dissecting contributions of catalytic and reader domains in regulation of histone demethylation. Methods in Enzymology, 2020, 639, 217-236.	1.0	1
40	A Novel Enzymatic Rearrangement. Chemistry and Biology, 2010, 17, 1269-1270.	6.0	0
41	Investigating Roles of Reader Domains in Regulating Activity of Jumonji Histone Demethylases. FASEB Journal, 2013, 27, 337.2.	0.5	0