
Rainer Schulz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4342774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Cathepsin D-Cleaved 16 kDa Form of Prolactin Mediates Postpartum Cardiomyopathy. Cell, 2007, 128, 589-600.	28.9	736
2	Interaction of Cardiovascular Risk Factors with Myocardial Ischemia/Reperfusion Injury, Preconditioning, and Postconditioning. Pharmacological Reviews, 2007, 59, 418-458.	16.0	631
3	Interaction of Risk Factors, Comorbidities, and Comedications with Ischemia/Reperfusion Injury and Cardioprotection by Preconditioning, Postconditioning, and Remote Conditioning. Pharmacological Reviews, 2014, 66, 1142-1174.	16.0	521
4	Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radical Biology and Medicine, 2003, 35, 790-796.	2.9	519
5	Red blood cells express a functional endothelial nitric oxide synthase. Blood, 2006, 107, 2943-2951.	1.4	490
6	Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury. Journal of the American College of Cardiology, 2019, 73, 89-99.	2.8	484
7	Postconditioning and protection from reperfusion injury: where do we stand? * Position Paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2010, 87, 406-423.	3.8	447
8	Cardioprotection. Circulation, 2008, 118, 1915-1919.	1.6	407
9	Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovascular Research, 2004, 61, 402-413.	3.8	394
10	Coronary Microembolization. Circulation, 2009, 120, 1822-1836.	1.6	373
11	High-Density Lipoproteins and Their Constituent, Sphingosine-1-Phosphate, Directly Protect the Heart Against Ischemia/Reperfusion Injury In Vivo via the S1P 3 Lysophospholipid Receptor. Circulation, 2006, 114, 1403-1409.	1.6	372
12	TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure. , 2010, 127, 295-314.		371
13	Signal Transducer and Activator of Transcription 3 Is Required for Myocardial Capillary Growth, Control of Interstitial Matrix Deposition, and Heart Protection From Ischemic Injury. Circulation Research, 2004, 95, 187-195.	4.5	345
14	Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Research in Cardiology, 2010, 105, 771-785.	5.9	335
15	ATP Release From Activated Neutrophils Occurs via Connexin 43 and Modulates Adenosine-Dependent Endothelial Cell Function. Circulation Research, 2006, 99, 1100-1108.	4.5	314
16	Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Research in Cardiology, 2018, 113, 39.	5.9	311
17	The myocardial JAK/STAT pathway: From protection to failure. , 2008, 120, 172-185.		304
18	Loss of cardioprotection with ageing. Cardiovascular Research, 2009, 83, 247-261.	3.8	296

#	Article	IF	CITATIONS
19	Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 19-34.	3.8	284
20	Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 349-369.	7.3	279
21	Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 564-585.	3.8	278
22	Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovascular Research, 2005, 67, 234-244.	3.8	270
23	Adenosine-Mediated Effects of Ticagrelor. Journal of the American College of Cardiology, 2014, 63, 2503-2509.	2.8	265
24	Cardioprotection by Ischemic Postconditioning Is Lost in Aged and STAT3-Deficient Mice. Circulation Research, 2008, 102, 131-135.	4.5	257
25	Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Research in Cardiology, 2010, 105, 151-154.	5.9	256
26	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
27	Ischemic Postconditioning in Pigs. Circulation Research, 2009, 104, 15-18.	4.5	240
28	Impairment of Diazoxide-Induced Formation of Reactive Oxygen Species and Loss of Cardioprotection in Connexin 43 Deficient Mice. Circulation Research, 2005, 97, 583-586.	4.5	226
29	Translocation of Connexin 43 to the Inner Mitochondrial Membrane of Cardiomyocytes Through the Heat Shock Protein 90–Dependent TOM Pathway and Its Importance for Cardioprotection. Circulation Research, 2006, 99, 93-101.	4.5	221
30	Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Research in Cardiology, 2013, 108, 309.	5.9	216
31	Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. European Heart Journal, 2016, 37, 1789-1798.	2.2	210
32	Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2013, 98, 7-27.	3.8	209
33	TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Failure Reviews, 2011, 16, 49-69.	3.9	207
34	Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. , 2015, 153, 90-106.		194
35	Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacological Reviews, 2017, 69, 396-478.	16.0	191
36	lschemic postconditioning: experimental models and protocol algorithms. Basic Research in Cardiology, 2009, 104, 469-483.	5.9	182

#	Article	IF	CITATIONS
37	Myocardial Dysfunction With Coronary Microembolization. Circulation Research, 2002, 90, 807-813.	4.5	181
38	Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. Journal of the American College of Cardiology, 1998, 32, 1787-1796.	2.8	177
39	Coronary Microembolization: the Role of TNF- $\hat{I}\pm$ in Contractile Dysfunction. Journal of Molecular and Cellular Cardiology, 2002, 34, 51-62.	1.9	176
40	Myocardial hibernation: a delicate balance. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H984-H999.	3.2	176
41	The role of gasotransmitters <scp><scp>NO</scp>, <scp><scp>H₂S</scp> </scp> and <scp><scp>CO</scp> </scp> in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. British Journal of Pharmacology, 2015, 172, 1587-1606.</scp>	5.4	163
42	Plasma Nitrosothiols Contribute to the Systemic Vasodilator Effects of Intravenously Applied NO. Circulation Research, 2002, 91, 470-477.	4.5	162
43	Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1764-H1769.	3.2	161
44	Preprocedural Statin Medication Reduces the Extent of Periprocedural Non–Q-Wave Myocardial Infarction. Circulation, 2002, 106, 2180-2183.	1.6	158
45	Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Research in Cardiology, 2009, 104, 141-147.	5.9	157
46	The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovascular Research, 2019, 115, 1143-1155.	3.8	151
47	Bidirectional Role of Tumor Necrosis Factor- $\hat{l}\pm$ in Coronary Microembolization. Circulation Research, 2007, 100, 140-146.	4.5	149
48	Phosphoinositide 3-Kinase Gamma Inhibition Protects From Anthracycline Cardiotoxicity and Reduces Tumor Growth. Circulation, 2018, 138, 696-711.	1.6	145
49	ESC Working Group Cellular Biology of the Heart: Position Paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovascular Research, 2014, 104, 399-411.	3.8	143
50	Prevention of Ischemic Preconditioning Only by Combined Inhibition of Protein Kinase C and Protein Tyrosine Kinase in Pigs. Journal of Molecular and Cellular Cardiology, 1998, 30, 197-209.	1.9	142
51	Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. European Heart Journal, 2006, 27, 875-881.	2.2	142
52	Improvement of regional myocardial blood flow and function and reduction of infarct size with ivabradine: protection beyond heart rate reduction. European Heart Journal, 2008, 29, 2265-2275.	2.2	129
53	Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovascular Research, 2019, 115, 1117-1130.	3.8	125
54	Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovascular Research, 2009, 83, 747-756.	3.8	124

#	Article	IF	CITATIONS
55	Coronary microembolization*1. Journal of Molecular and Cellular Cardiology, 2004, 37, 23-31.	1.9	123
56	Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 725-736.	3.8	114
57	Involvement of endogenous adenosine in ischaemic preconditioning in swine. Pflugers Archiv European Journal of Physiology, 1995, 430, 273-282.	2.8	112
58	Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. Journal of Cellular and Molecular Medicine, 2012, 16, 1649-1655.	3.6	102
59	No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Research in Cardiology, 2006, 101, 354-356.	5.9	100
60	Pathophysiology of Myocardial Infarction. Herz, 2008, 33, 88-100.	1.1	100
61	Vasoconstrictor Potential of Coronary Aspirate From Patients Undergoing Stenting of Saphenous Vein Aortocoronary Bypass Grafts and Its Pharmacological Attenuation. Circulation Research, 2011, 108, 344-352.	4.5	100
62	Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Research in Cardiology, 2017, 112, 27.	5.9	98
63	Positive effects of nitric oxide on left ventricular function in humans. European Heart Journal, 2006, 27, 1699-1705.	2.2	96
64	Cyclosporine A at Reperfusion Reduces Infarct Size in Pigs. Cardiovascular Drugs and Therapy, 2010, 24, 85-87.	2.6	95
65	The in-situ pig heart with regional ischemia/reperfusion — Ready for translation. Journal of Molecular and Cellular Cardiology, 2011, 50, 951-963.	1.9	94
66	Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Research in Cardiology, 2015, 110, 4.	5.9	94
67	Effects of P2Y ₁₂ receptor antagonists beyond platelet inhibition – comparison of ticagrelor with thienopyridines. British Journal of Pharmacology, 2016, 173, 1163-1178.	5.4	92
68	Calcium Responsiveness in Regional Myocardial Short-term Hibernation and Stunning in the In Situ Porcine Heart. Circulation, 1996, 93, 1556-1566.	1.6	89
69	Definition of hidden drug cardiotoxicity: paradigm change in cardiac safety testing and its clinical implications. European Heart Journal, 2019, 40, 1771-1777.	2.2	88
70	Connexin 43 and ischemic preconditioning. Cardiovascular Research, 2004, 62, 335-344.	3.8	84
71	No Prevention of Ischemic Preconditioning by the Protein Kinase C Inhibitor Staurosporine in Swine. Circulation Research, 1996, 79, 407-414.	4.5	84
72	Pharmacodynamics and pharmacokinetics of single doses of subcutaneous pegylated human G-CSF mutant (Ro 25-8315) in healthy volunteers: Comparison with single and multiple daily doses of filgrastim. American Journal of Hematology, 2001, 66, 245-251.	4.1	81

#	Article	IF	CITATIONS
73	Glucocorticoid Treatment Prevents Progressive Myocardial Dysfunction Resulting From Experimental Coronary Microembolization. Circulation, 2004, 109, 2337-2342.	1.6	81
74	Connexin 43 in ischemic pre- and postconditioning. Heart Failure Reviews, 2007, 12, 261-266.	3.9	80
75	Tumor Necrosis Factor- \hat{l}_{\pm} and Its Receptors 1 and 2. Circulation, 2009, 119, 1355-1357.	1.6	80
76	Monoamine Oxidases Are Mediators of Endothelial Dysfunction in the Mouse Aorta. Hypertension, 2013, 62, 140-146.	2.7	78
77	HFA1 Encoding an Organelle-specific Acetyl-CoA Carboxylase Controls Mitochondrial Fatty Acid Synthesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 21779-21786.	3.4	75
78	Pharmacological modulation of connexinâ€formed channels in cardiac pathophysiology. British Journal of Pharmacology, 2011, 163, 469-483.	5.4	75
79	The STAT3 Inhibitor Stattic Impairs Cardiomyocyte Mitochondrial Function Through Increased Reactive Oxygen Species Formation. Current Pharmaceutical Design, 2013, 19, 6890-6895.	1.9	75
80	p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovascular Research, 2002, 55, 690-700.	3.8	74
81	IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria: guidelines of the EU-CARDIOPROTECTION COST Action. Basic Research in Cardiology, 2021, 116, 52.	5.9	73
82	The coronary circulation in cardioprotection: more than just one confounder. Cardiovascular Research, 2012, 94, 237-245.	3.8	72
83	Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H927-H943.	3.2	72
84	Effect of hypercholesterolaemia on myocardial function, ischaemia–reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. British Journal of Pharmacology, 2017, 174, 1555-1569.	5.4	71
85	Mitochondria "THE―target of myocardial conditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1215-H1231.	3.2	71
86	Influence of the antacid Maalox on the pharmacokinetics of capecitabine in cancer patients. Cancer Chemotherapy and Pharmacology, 1999, 43, 309-315.	2.3	69
87	Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial KATP channels in mouse cardiomyocytes. Journal of Clinical Investigation, 2010, 120, 1441-1453.	8.2	69
88	AP39, a mitochondria-targeting hydrogen sulfide (H ₂ S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. British Journal of Pharmacology, 2017, 174, 287-301.	5.4	69
89	Forest structure and woody plant species composition along a fire chronosequence in mixed pine–oak forest in the Sierra Madre Oriental, Northeast Mexico. Forest Ecology and Management, 2008, 256, 161-167.	3.2	68
90	Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Research in Cardiology, 2017, 112, 32.	5.9	66

#	Article	IF	CITATIONS
91	Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress – Implications for cardiovascular and neurodegenerative diseases. Archives of Biochemistry and Biophysics, 2020, 696, 108662.	3.0	66
92	No Involvement of Endogenous Nitric Oxide In Classical Ischemic Preconditioning in Swine. Journal of Molecular and Cellular Cardiology, 2000, 32, 725-733.	1.9	65
93	Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes. Cardiovascular Research, 2006, 71, 374-382.	3.8	65
94	Connexin 43 and Mitochondria in Cardiovascular Health and Disease. Advances in Experimental Medicine and Biology, 2017, 982, 227-246.	1.6	65
95	TNF? in ischemia/reperfusion injury and heart failure. Basic Research in Cardiology, 2004, 99, 8-11.	5.9	64
96	Reduction of infarct size by gentle reperfusion without activation of reperfusion injury salvage kinases in pigs. Cardiovascular Research, 2010, 85, 110-117.	3.8	64
97	Novel therapeutic strategies for cardioprotection. , 2014, 144, 60-70.		64
98	Beta-Blocker Therapy of Severe Congestive Heart Failure in Infants With Left to Right Shunts. American Journal of Cardiology, 1998, 81, 1366-1368.	1.6	63
99	Inhibition of the Na+/H+ exchanger attenuates the deterioration of ventricular function during pacing-induced heart failure in rabbits. Cardiovascular Research, 2004, 63, 273-282.	3.8	63
100	Oxidative stress and inflammation contribute to traffic noise-induced vascular and cerebral dysfunction via uncoupling of nitric oxide synthases. Redox Biology, 2020, 34, 101506.	9.0	63
101	Tyramine kinetics and pressor sensitivity during monoamine oxidase inhibition by selegiline. Clinical Pharmacology and Therapeutics, 1989, 46, 528-536.	4.7	62
102	Nuclear-encoded mitochondrial proteins and their role in cardioprotection. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1286-1294.	4.1	61
103	S-nitrosation of mitochondrial connexin 43 regulates mitochondrial function. Basic Research in Cardiology, 2014, 109, 433.	5.9	61
104	Randomized trial of ticagrelor vs. aspirin in patients after coronary artery bypass grafting: the TiCAB trial. European Heart Journal, 2019, 40, 2432-2440.	2.2	61
105	The role of mitochondrial reactive oxygen species, NO and H ₂ S in ischaemia/reperfusion injury and cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 6510-6522.	3.6	58
106	Intraischemic Preconditioning. Circulation Research, 1995, 76, 942-950.	4.5	58
107	Hibernating Myocardium: A Review. Journal of Molecular and Cellular Cardiology, 1996, 28, 2359-2372.	1.9	56
108	Inducible Nitric Oxide Synthase Expression and Cardiomyocyte Dysfunction During Sustained Moderate Ischemia in Pigs. Circulation Research, 2008, 103, 1120-1127.	4.5	56

#	Article	IF	CITATIONS
109	Mitochondria in Postconditioning. Antioxidants and Redox Signaling, 2011, 14, 863-880.	5.4	56
110	New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases. British Journal of Pharmacology, 2017, 174, 1690-1703.	5.4	56
111	Connexin 43 impacts on mitochondrial potassium uptake. Frontiers in Pharmacology, 2013, 4, 73.	3.5	55
112	Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein <i>S</i> -nitrosylation. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H446-H453.	3.2	54
113	MicroRNA expression profile of human advanced coronary atherosclerotic plaques. Scientific Reports, 2018, 8, 7823.	3.3	54
114	Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 367-385.	3.8	53
115	Cholesterol diet leads to attenuation of ischemic preconditioning-induced cardiac protection: the role of connexin 43. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1907-H1913.	3.2	52
116	Nitrite in organ protection. British Journal of Pharmacology, 2014, 171, 1-11.	5.4	49
117	cAMP controls the restoration of endothelial barrier function after thrombin-induced hyperpermeability via Rac1 activation. Physiological Reports, 2014, 2, e12175.	1.7	49
118	Oxidized low-density lipoprotein (oxLDL) affects load-free cell shortening of cardiomyocytes in a proprotein convertase subtilisin/kexin 9 (PCSK9)-dependent way. Basic Research in Cardiology, 2017, 112, 63.	5.9	49
119	Hypoxia–reoxygenationâ€induced endothelial barrier failure: role of RhoA, Rac1 and myosin light chain kinase. Journal of Physiology, 2013, 591, 461-473.	2.9	48
120	Mitochondrial ion channels as targets for cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 7102-7114.	3.6	48
121	Microdialysis-based analysis of interstitial NO in situ: NO synthase-independent NO formation during myocardial ischemiaâ~†. Cardiovascular Research, 2007, 74, 46-55.	3.8	47
122	Pharmacological Intervention to Modulate HDL: What Do We Target?. Frontiers in Pharmacology, 2017, 8, 989.	3.5	47
123	PCSK9 targets important for lipid metabolism. Clinical Research in Cardiology Supplements, 2017, 12, 2-11.	2.0	46
124	Ageing, sex, and cardioprotection. British Journal of Pharmacology, 2020, 177, 5270-5286.	5.4	46
125	Clycine, a simple physiological compound protecting by yet puzzling mechanism(s) against ischaemia–reperfusion injury: current knowledge. British Journal of Pharmacology, 2012, 165, 2059-2072.	5.4	44
126	P66shc and its role in ischemic cardiovascular diseases. Basic Research in Cardiology, 2019, 114, 29.	5.9	44

#	Article	IF	CITATIONS
127	Inorganic phosphate content and free energy change of ATP hydrolysis in regional short-term hibernating myocardium. Cardiovascular Research, 1998, 39, 318-326.	3.8	43
128	Desferoxamine and ethyl-3,4-dihydroxybenzoate protect myocardium by activating NOS and generating mitochondrial ROS. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H450-H457.	3.2	43
129	New insights into the S-nitrosothiol–ascorbate reaction. The formation of nitroxyl. Organic and Biomolecular Chemistry, 2009, 7, 1954.	2.8	43
130	Expression of calcium regulatory proteins in short-term hibernation and stunning in the in situ porcine heart1. Cardiovascular Research, 1998, 37, 606-617.	3.8	42
131	NOX4 in Mitochondria: Yeast Two-Hybrid-Based Interaction with Complex I Without Relevance for Basal Reactive Oxygen Species?. Antioxidants and Redox Signaling, 2015, 23, 1106-1112.	5.4	42
132	From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular researchâ€: Basic Research in Cardiology, 2016, 111, 69.	5.9	41
133	Minimal ?1- and ?2-adrenoceptor-mediated coronary vasoconstriction in the anaesthetized swine. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 342, 422-8.	3.0	40
134	Pleiotropic effects of statins. Journal of the American College of Cardiology, 2005, 45, 1292-1294.	2.8	40
135	Association of bilirubin with coronary artery calcification and cardiovascular events in the general population without known liver disease: the Heinz Nixdorf Recall study. Clinical Research in Cardiology, 2014, 103, 647-653.	3.3	38
136	Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection. British Journal of Pharmacology, 2020, 177, 5393-5412.	5.4	37
137	Perfusion-contraction match and mismatch. Basic Research in Cardiology, 2001, 96, 1-10.	5.9	35
138	Inhibition of AP-1 signaling by JDP2 overexpression protects cardiomyocytes against hypertrophy and apoptosis induction. Cardiovascular Research, 2013, 99, 121-128.	3.8	35
139	Coronary microembolization. Progress in Cardiovascular Diseases, 2001, 44, 217-230.	3.1	34
140	Connexin43 and Ischemic Preconditioning. , 2006, 42, 213-227.		34
141	Regulation and Role of the Presynaptic and Myocardial Na+/H+Exchanger NHE1: Effects on the Sympathetic Nervous System in Heart Failure. Cardiovascular Drug Reviews, 2007, 25, 123-131.	4.1	34
142	Mechanisms involved in postconditioning protection of cardiomyocytes against acute reperfusion injury. Journal of Molecular and Cellular Cardiology, 2013, 58, 209-216.	1.9	34
143	Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovascular Research, 2020, 116, 1835-1849.	3.8	34
144	"Myocardial stunning― Cardiovascular Research, 1998, 38, 549-558.	3.8	33

#	Article	IF	CITATIONS
145	Specific Mechanisms Underlying Right Heart Failure: The Missing Upregulation of Superoxide Dismutase-2 and Its Decisive Role in Antioxidative Defense. Antioxidants and Redox Signaling, 2015, 23, 1220-1232.	5.4	33
146	Connexin 43 and ischemic preconditioning: effects of age and disease. Experimental Gerontology, 2006, 41, 485-488.	2.8	32
147	Interaction between Connexin 43 and nitric oxide synthase in mice heart mitochondria. Journal of Cellular and Molecular Medicine, 2015, 19, 815-825.	3.6	31
148	RyR2 regulates Cx43 hemichannel intracellular Ca2+-dependent activation in cardiomyocytes. Cardiovascular Research, 2021, 117, 123-136.	3.8	31
149	Involvement of endogenous prostaglandins in ischemic preconditioning in pigs. Cardiovascular Research, 2002, 55, 626-632.	3.8	30
150	Prevention of the ischemia-induced decrease in mitochondrial Tom20 content by ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 2006, 41, 426-430.	1.9	30
151	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	3.8	30
152	A State Space Model for Berlin House Prices: Estimation and Economic Interpretation. Journal of Real Estate Finance and Economics, 2004, 28, 37-57.	1.5	29
153	The cellular prion protein counteracts cardiac oxidative stress. Cardiovascular Research, 2014, 104, 93-102.	3.8	29
154	Ischemia and reperfusion related myocardial inflammation: A network of cells and mediators targeting the cardiomyocyte. IUBMB Life, 2015, 67, 110-119.	3.4	29
155	The gap junction modifier ZP1609 decreases cardiomyocyte hypercontracture following ischaemia/reperfusion independent from mitochondrial connexin 43. British Journal of Pharmacology, 2017, 174, 2060-2073.	5.4	29
156	In vivo MRI and ex vivo histological assessment of the cardioprotection induced by ischemic preconditioning, postconditioning and remote conditioning in a closed-chest porcine model of reperfused acute myocardial infarction: importance of microvasculature. Journal of Translational Medicine, 2017, 15, 67.	4.4	29
157	Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new therapeutic options to mimic its effects. British Journal of Pharmacology, 2014, 171, 2964-2992.	5.4	28
158	Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radical Biology and Medicine, 2021, 166, 33-52.	2.9	28
159	CORDAT II: A new program for data acquisition and on-line calculation of hemodynamic and regional myocardial dimension parameters. Computers in Biology and Medicine, 1993, 23, 359-367.	7.0	27
160	Coronary microembolization does not induce acute preconditioning against infarction in pigs?the role of adenosine. Cardiovascular Research, 2004, 63, 313-322.	3.8	27
161	Positron Emission Tomography Analysis of [1- ¹¹ C]Acetate Kinetics in Short-term Hibernating Myocardium. Circulation, 1998, 97, 1009-1016.	1.6	26
162	Glycogen synthase kinase 3β transfers cytoprotective signaling through connexin 43 onto mitochondrial ATP-sensitive K ⁺ channels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E242-51.	7.1	26

#	Article	IF	CITATIONS
163	Endothelial Mesenchymal Transition in Hypoxic Microvascular Endothelial Cells and Paracrine Induction of Cardiomyocyte Apoptosis Are Mediated via TGFβ1/SMAD Signaling. International Journal of Molecular Sciences, 2017, 18, 2290.	4.1	26
164	The effect of bosentan on the pharmacokinetics of digoxin in healthy male subjects. British Journal of Clinical Pharmacology, 1999, 47, 701-706.	2.4	25
165	No impact of protein phosphatases on connexin 43 phosphorylation in ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2106-H2112.	3.2	25
166	Investigating and re-evaluating the role of glycogen synthase kinase 3 beta kinase as a molecular target for cardioprotection by using novel pharmacological inhibitors. Cardiovascular Research, 2019, 115, 1228-1243.	3.8	25
167	Effectiveness of low dose Captopril versus Propranolol therapy in infants with severe congestive failure due to left-to-right shunts. International Journal of Cardiology, 2000, 76, 227-233.	1.7	24
168	Reduction of cerebral infarct size by the AT1-receptor blocker candesartan, the HMG-CoA reductase inhibitor rosuvastatin and their combination. Neuroscience Letters, 2006, 406, 92-96.	2.1	24
169	Mechanism and consequences of the shift in cardiac arginine metabolism following ischaemia and reperfusion in rats. Thrombosis and Haemostasis, 2015, 113, 482-493.	3.4	24
170	Thiol-based redox-active proteins as cardioprotective therapeutic agents in cardiovascular diseases. Basic Research in Cardiology, 2021, 116, 44.	5.9	24
171	The Biology of Myocardial Hibernation. Trends in Cardiovascular Medicine, 2000, 10, 108-114.	4.9	23
172	Survival pathways in cardiac conditioning: individual data vs. meta-analyses. What do we learn?. Basic Research in Cardiology, 2018, 113, 4.	5.9	23
173	Review on Chamber-Specific Differences in Right and Left Heart Reactive Oxygen Species Handling. Frontiers in Physiology, 2018, 9, 1799.	2.8	23
174	The Stress-responsive MAP Kinase p38 is Activated by Low-flow Ischemia in the in situ Porcine Heart. Journal of Molecular and Cellular Cardiology, 2000, 32, 1787-1794.	1.9	22
175	Purinergic Regulation of Endothelial Barrier Function. International Journal of Molecular Sciences, 2021, 22, 1207.	4.1	22
176	Transactions that did not happen and their influence on prices. Journal of Economic Behavior and Organization, 2005, 56, 567-591.	2.0	21
177	TNFα in myocardial ischemia/reperfusion: Damage vs. protection. Journal of Molecular and Cellular Cardiology, 2008, 45, 712-714.	1.9	21
178	Activation of ATP-dependent potassium channels is a trigger but not a mediator of ischaemic preconditioning in pigs. British Journal of Pharmacology, 2003, 139, 65-72.	5.4	20
179	A randomized, parallel group, double-blind study of ticagrelor compared with aspirin for prevention of vascular events in patients undergoing coronary artery bypass graft operation: Rationale and design of the Ticagrelor in CABG (TiCAB) trial. American Heart Journal, 2016, 179, 69-76.	2.7	20
180	Lack of Contribution of p66shc and Its Mitochondrial Translocation to Ischemia-Reperfusion Injury and Cardioprotection by Ischemic Preconditioning. Frontiers in Physiology, 2017, 8, 733.	2.8	20

#	Article	IF	CITATIONS
181	Vascular and Cardiac Oxidative Stress and Inflammation as Targets for Cardioprotection. Current Pharmaceutical Design, 2021, 27, 2112-2130.	1.9	20
182	CTRP9 Mediates Protective Effects in Cardiomyocytes via AMPK- and Adiponectin Receptor-Mediated Induction of Anti-Oxidant Response. Cells, 2020, 9, 1229.	4.1	19
183	Cardiomyocytes-specific deletion of monoamine oxidase B reduces irreversible myocardial ischemia/reperfusion injury. Free Radical Biology and Medicine, 2021, 165, 14-23.	2.9	19
184	AIM2-driven inflammasome activation in heart failure. Cardiovascular Research, 2021, 117, 2639-2651.	3.8	19
185	Hibernating Myocardium. Circulation Research, 2002, 91, 863-865.	4.5	18
186	Preinfarction angina: No interference of coronary microembolization with acute ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 2005, 39, 355-361.	1.9	18
187	Identification of microRNAs as potential cellular monocytic biomarkers in the early phase of myocardial infarction: a pilot study. Scientific Reports, 2017, 7, 15974.	3.3	18
188	Angiotensin II type 1 receptors in cerebral ischaemia-reperfusion: initiation of inflammation. Journal of Hypertension, 2006, 24, S123-S129.	0.5	17
189	Reduced calcium responsiveness characterizes contractile dysfunction following coronary microembolization. Basic Research in Cardiology, 2008, 103, 552-559.	5.9	17
190	Cardioprotection by Ivabradine Through Heart Rate Reduction and Beyond. Journal of Cardiovascular Pharmacology and Therapeutics, 2011, 16, 281-284.	2.0	17
191	Preservation of peripheral vasodilation as a surrogate of cardioprotection? The mechanistic role of ATP-dependent potassium channels and the mitochondrial permeability transition pore. European Heart Journal, 2011, 32, 1184-1186.	2.2	17
192	C-Reactive Protein. Hypertension, 2011, 57, 151-153.	2.7	17
193	Selegiline reduces adiposity induced by highâ€fat, highâ€sucrose diet in male rats. British Journal of Pharmacology, 2018, 175, 3713-3726.	5.4	17
194	Redox Regulatory Changes of Circadian Rhythm by the Environmental Risk Factors Traffic Noise and Air Pollution. Antioxidants and Redox Signaling, 2022, 37, 679-703.	5.4	17
195	Regional differences of myocardial infarct development and ischemic preconditioning. Basic Research in Cardiology, 2005, 100, 48-56.	5.9	16
196	Mitochondrial respiration and membrane potential after low-flow ischemia are not affected by ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 2007, 43, 610-615.	1.9	16
197	Protection against pressure overload-induced right heart failure by uncoupling protein 2 silencing. Cardiovascular Research, 2019, 115, 1217-1227.	3.8	16
198	Autocrine effects of PCSK9 on cardiomyocytes. Basic Research in Cardiology, 2020, 115, 65.	5.9	16

#	Article	IF	CITATIONS
199	Hidden Cardiotoxicity of Rofecoxib Can be Revealed in Experimental Models of Ischemia/Reperfusion. Cells, 2020, 9, 551.	4.1	16
200	Impact of PCSK9 on CTRP9-Induced Metabolic Effects in Adult Rat Cardiomyocytes. Frontiers in Physiology, 2021, 12, 593862.	2.8	16
201	Importance of Cx43 for Right Ventricular Function. International Journal of Molecular Sciences, 2021, 22, 987.	4.1	16
202	Nucleoside triphosphates inhibit ADP, collagen, and epinephrine-induced platelet aggregation: Role of P2Y1 and P2Y12 receptors. Thrombosis Research, 2013, 132, 548-557.	1.7	15
203	Endogenous Protective Mechanisms in Myocardial Ischemia. American Journal of Cardiology, 1997, 80, 26A-33A.	1.6	14
204	Impaired resting perfusion in viable myocardium distal to chronic coronary stenosis in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2588-H2593.	3.2	14
205	The role of heart rate and the benefits of heart rate reduction in acute myocardial ischaemia. Country Review Ukraine, 2007, 9, F8-F14.	0.8	14
206	Nagarse treatment of cardiac subsarcolemmal and interfibrillar mitochondria leads to artefacts in mitochondrial protein quantification. Journal of Pharmacological and Toxicological Methods, 2018, 91, 50-58.	0.7	14
207	Pressure-flow characteristics in the right and left ventricular perfusion territories of the right coronary artery in swine. Pflugers Archiv European Journal of Physiology, 1991, 419, 622-628.	2.8	13
208	Neglect of the coronary circulation: some critical remarks on problems in the translation of cardioprotection. Cardiovascular Research, 2009, 84, 11-14.	3.8	13
209	Novel putative pharmacological therapies to protect the right ventricle in pulmonary hypertension: a review of current literature. British Journal of Pharmacology, 2017, 174, 497-511.	5.4	13
210	JDP2 overexpression provokes cardiac dysfunction in mice. Scientific Reports, 2018, 8, 7647.	3.3	13
211	Differential effects of right and left heart failure on skeletal muscle in rats. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1830-1849.	7.3	13
212	Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial KATP channels in mouse cardiomyocytes. Journal of Clinical Investigation, 2012, 122, 4748-4748.	8.2	13
213	Making profits in wartime: corporate profits, inequality, and GDP in Germany during the First World War. Economic History Review, 2005, 58, 34-56.	0.9	12
214	Inhibition of Na+ /H+ -exchanger with sabiporide attenuates the downregulation and uncoupling of the myocardial β -adrenoceptor system in failing rabbit hearts. British Journal of Pharmacology, 2006, 148, 137-146.	5.4	12
215	Does nitric oxide signaling differ in pre- and post-conditioning? Importance of S-nitrosylation vs. protein kinase G activation. Free Radical Biology and Medicine, 2013, 54, 113-115.	2.9	12
216	Unmasking right ventricular-arterial uncoupling during fluid challenge in pulmonary hypertension. Journal of Heart and Lung Transplantation, 2022, 41, 345-355.	0.6	12

#	Article	IF	CITATIONS
217	Impact of Resting and Ischemic Blood Flow on Infarct Probability in Ischemic Preconditioning—a New Approach to Infarct Size-Blood Flow Data by Logistic Regression. Journal of Molecular and Cellular Cardiology, 1998, 30, 2719-2728.	1.9	11
218	Reduction of Cerebral Infarct Size by Dronedarone. Cardiovascular Drugs and Therapy, 2011, 25, 523-529.	2.6	11
219	Cardiomyocyte-specific deletion of survivin causes global cardiac conduction defects. Basic Research in Cardiology, 2012, 107, 299.	5.9	11
220	Melatonin as a cardioprotective therapy following ST-segment elevation myocardial infarction: is it really promising? Reply. Cardiovascular Research, 2017, 113, 1418-1419.	3.8	11
221	Effect of ticagrelor on endothelial calcium signalling and barrier function. Thrombosis and Haemostasis, 2017, 117, 371-381.	3.4	11
222	Quantification of Cardioprotective Gene Expression in Porcine Short-term Hibernating Myocardium. Journal of Molecular and Cellular Cardiology, 1999, 31, 147-158.	1.9	10
223	X-ray densitometry for the measurement of regional myocardial perfusion. Basic Research in Cardiology, 2000, 95, 261-270.	5.9	10
224	Mesenteric ischemia-reperfusion injury: Clearly improved hemodynamics but only minor protection of the rat small intestine by (sub)therapeutic heparin sodium and enoxaparin doses. Journal of Surgical Research, 2013, 179, e57-e69.	1.6	10
225	Compound C inhibits in vitro angiogenesis and ameliorates thrombin-induced endothelial barrier failure. European Journal of Pharmacology, 2015, 768, 165-172.	3.5	10
226	Mitochondrial potassium homeostasis: a central player in cardioprotection. Cardiovascular Research, 2016, 110, 4-5.	3.8	10
227	Epigenetic modulation of vascular diseases: Assessing the evidence and exploring the opportunities. Vascular Pharmacology, 2018, 107, 43-52.	2.1	10
228	Transcriptional Alterations by Ischaemic Postconditioning in a Pig Infarction Model: Impact on Microvascular Protection. International Journal of Molecular Sciences, 2019, 20, 344.	4.1	10
229	Cardioprotection in right heart failure. British Journal of Pharmacology, 2020, 177, 5413-5431.	5.4	10
230	Matrix Metalloproteinases Repress Hypertrophic Growth in Cardiac Myocytes. Cardiovascular Drugs and Therapy, 2021, 35, 353-365.	2.6	10
231	Cardiac miRNA Expression and their mRNA Targets in a Rat Model of Prediabetes. International Journal of Molecular Sciences, 2020, 21, 2128.	4.1	9
232	Interventricular redistribution of myocardial blood flow during metabolic vasodilation. Pflugers Archiv European Journal of Physiology, 1991, 417, 485-492.	2.8	8
233	Features of short-term myocardial hibernation. , 1998, 186, 185-193.		8
234	Arginase induction and activation during ischemia and reperfusion and functional consequences for the heart. Frontiers in Physiology, 2015, 6, .	2.8	8

#	Article	IF	CITATIONS
235	Genetic deletion of p66shc and/or cyclophilin D results in decreased pulmonary vascular tone. Cardiovascular Research, 2022, 118, 305-315.	3.8	8
236	Balance and imbalance of regional myocardial contractile function and blood flow. Clinical Research in Cardiology, 2001, 90, 964-969.	1.1	7
237	A new paradigm: cross talk of protein kinases during reperfusion saves life!. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1-H2.	3.2	7
238	Adverse Effects on βâ€Adrenergic Receptor Coupling: Ischemic Postconditioning Failed to Preserve Longâ€Term Cardiac Function. Journal of the American Heart Association, 2017, 6, .	3.7	7
239	Connexins in cardiac ischemia. Current Opinion in Physiology, 2018, 2, 123-128.	1.8	7
240	Structural, Pro-Inflammatory and Calcium Handling Remodeling Underlies Spontaneous Onset of Paroxysmal Atrial Fibrillation in JDP2-Overexpressing Mice. International Journal of Molecular Sciences, 2020, 21, 9095.	4.1	6
241	Pharmacological mechanisms to attenuate sympathetically induced myocardial ischemia. Cardiovascular Drugs and Therapy, 1989, 3, 43-56.	2.6	5
242	Inactivation of recombinant plasmid DNA from a human erythropoietin-producing mouse cell line grown on a large scale. Applied Microbiology and Biotechnology, 1991, 35, 622-30.	3.6	5
243	Little Evidence for Lethal Reperfusion Injury to Cardiomyocytes. Journal of Thrombosis and Thrombolysis, 1997, 4, 111-112.	2.1	5
244	The Impact of Subarachnoid Hemorrhage on Regional Cerebral Blood Flow and Large-vessel Diameter in the Canine Model of Chronic Vasospasm. Journal of Stroke and Cerebrovascular Diseases, 2007, 16, 45-51.	1.6	5
245	Old and new biomarkers of oxidative stress in heart failure. Drug Discovery Today: Therapeutic Strategies, 2012, 9, e189-e198.	0.5	5
246	Pleiotropic Effects of Dronedarone on Ischemia/Reperfusion Injury in Heart and Brain. Cardiovascular Drugs and Therapy, 2012, 26, 257-263.	2.6	5
247	Swiprosin-1/EFhD-2 Expression in Cardiac Remodeling and Post-Infarct Repair: Effect of Ischemic Conditioning. International Journal of Molecular Sciences, 2020, 21, 3359.	4.1	5
248	Somatostatin and Its Receptors in Myocardial Ischemia/Reperfusion Injury and Cardioprotection. Frontiers in Pharmacology, 2021, 12, 663655.	3.5	5
249	Somatostatin Primes Endothelial Cells for Agonist-Induced Hyperpermeability and Angiogenesis In Vitro. International Journal of Molecular Sciences, 2022, 23, 3098.	4.1	5
250	Chronic Treatment with Fluvastatin Improves Smooth Muscle Dilatory Function in Genetically Determined Hyperlipoproteinemia. Journal of Cardiovascular Pharmacology, 2004, 43, 183-190.	1.9	4
251	Effect of nitric oxide deficiency on the pulmonary <scp>PTH</scp> rP system. Journal of Cellular and Molecular Medicine, 2017, 21, 96-106.	3.6	4
252	Lack of Contribution of p66shc to Pressure Overload-Induced Right Heart Hypertrophy. International Journal of Molecular Sciences, 2020, 21, 9339.	4.1	4

#	Article	lF	CITATIONS
253	Molecular Network Approach Reveals Rictor as a Central Target of Cardiac ProtectomiRs. International Journal of Molecular Sciences, 2021, 22, 9539.	4.1	4
254	Prognostic impact of secondary prevention after coronary artery bypass grafting—insights from the TiCAB trial. European Journal of Cardio-thoracic Surgery, 2022, 62, .	1.4	4
255	Extracellular Adenosine Attenuates Left Ventricular Hypertrophy Through Its Impact on the Protein Kinase and Phosphatase Interaction. Hypertension, 2008, 51, 1474-1475.	2.7	3
256	Mitochondrias' sense of SNO: pathway to cardioprotection in ischaemic preconditioning. Cardiovascular Research, 2015, 106, 182-183.	3.8	3
257	Induction of Proteasome Subunit Low Molecular Weight Protein (LMP)-2 Is Required to Induce Active Remodeling in Adult Rat Ventricular Cardiomyocytes. Medical Sciences (Basel, Switzerland), 2020, 8, 21.	2.9	3
258	Special issue "Implications of oxidative stress and redox biochemistry for heart disease and cardioprotection - The EU-CARDIOPROTECTION COST action (CA16225)― Free Radical Biology and Medicine, 2021, 171, 314-318.	2.9	3
259	AMPK Activation Is Indispensable for the Protective Effects of Caloric Restriction on Left Ventricular Function in Postinfarct Myocardium. Biology, 2022, 11, 448.	2.8	3
260	Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) Deletion but Not Inhibition of Extracellular PCSK9 Reduces Infarct Sizes Ex Vivo but Not In Vivo. International Journal of Molecular Sciences, 2022, 23, 6512.	4.1	3
261	Effects of verapamil and mibefradil on regional blood flow and function in normal and ischemic myocardium. Cardiovascular Drugs and Therapy, 1999, 13, 275-276.	2.6	2
262	The regulation and control of mitochondrial homeostasis in changing cardiac tolerance to ischemia-reperfusion injury: a focused issue. Basic Research in Cardiology, 2009, 104, 111-112.	5.9	2
263	Preface to Mitochondria and Cardioprotection. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1261-1262.	4.1	2
264	Platelet inhibitors influence cardioprotection: importance in preclinical study design: reply. Cardiovascular Research, 2015, 106, 8-8.	3.8	2
265	PI3K as Mediator of Apoptosis and Contractile Dysfunction in TGFβ1-Stimulated Cardiomyocytes. Biology, 2021, 10, 670.	2.8	2
266	Editorial: PCSK9: Importance in Physiology and Pathophysiology. Frontiers in Physiology, 2021, 12, 706115.	2.8	2
267	Endogenous protective mechanisms in myocardial ischaemia: hibernation and ischaemic preconditioning. Current Opinion in Anaesthesiology, 1994, 7, 18-25.	2.0	1
268	JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation?. International Journal of Molecular Sciences, 2021, 22, 4110.	4.1	1
269	Oxidative Stress and Nitrosative Stress. , 2016, , 267-278.		1
270	Overview of contemporary reperfusion strategies in acute ST-elevation myocardial infarction. Expert Review of Cardiovascular Therapy, 2005, 3, 667-680.	1.5	0

#	Article	IF	CITATIONS
271	Professor David Garcia-Dorado 1953–2019. European Heart Journal, 2019, 40, 3670-3671.	2.2	0
272	Professor David Garcia-Dorado 1953–2019 Obituary. Cardiovascular Research, 2019, 115, 1933-1934.	3.8	0