List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4342566/publications.pdf Version: 2024-02-01

SHIN TAKASAMA

#	Article	IF	CITATIONS
1	Anorexigenic Effects of Intermittent Hypoxia on the Gut—Brain Axis in Sleep Apnea Syndrome. International Journal of Molecular Sciences, 2022, 23, 364.	1.8	4
2	CD38–Cyclic ADP-Ribose Signal System in Physiology, Biochemistry, and Pathophysiology. International Journal of Molecular Sciences, 2022, 23, 4306.	1.8	13
3	Editorial to Special Issue "Sleep Apnea and Intermittent Hypoxia 2.0â€: International Journal of Molecular Sciences, 2022, 23, 5299.	1.8	0
4	Intermittent Hypoxia Increased the Expression of DBH and PNMT in Neuroblastoma Cells via MicroRNA-375-Mediated Mechanism. International Journal of Molecular Sciences, 2022, 23, 5868.	1.8	6
5	378-P: Upregulation of Regenerating Gene IV and Hepatocyte Growth Factor in Cardiomyocytes by Intermittent Hypoxia and Its MicroRNA-Mediated Mechanism. Diabetes, 2021, 70, .	0.3	1
6	Intermittent Hypoxia Upregulates the Renin and Cd38 mRNAs in Renin-Producing Cells via the Downregulation of miR-203. International Journal of Molecular Sciences, 2021, 22, 10127.	1.8	12
7	intracellular Ca ²⁺ mobilization and Reg (<i>Re</i> <i>generating</i>) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T	f 50 502 To 1.6	d (8
8	423-461. 27â€Hydroxycholesterol regulates human <i>SLC22A12</i> gene expression through estrogen receptor action. FASEB Journal, 2021, 35, e21262.	0.2	10
9	Effects of Intermittent Hypoxia on Cytokine Expression Involved in Insulin Resistance. International Journal of Molecular Sciences, 2021, 22, 12898.	1.8	10
10	1887-P: Intermittent Hypoxia Increased the Expressions of Interleukin (IL)-8, Osteonectin, and Myonectin via OCT1 and Nrf2 Binding to the Promoters in Muscle Cells. Diabetes, 2020, 69, 1887-P.	0.3	2
11	Involvement of Receptor for Advanced Glycation Endproducts in Hypertensive Disorders of Pregnancy. International Journal of Molecular Sciences, 2019, 20, 5462.	1.8	20
12	Effects of Intermittent Hypoxia on Pulmonary Vascular and Systemic Diseases. International Journal of Environmental Research and Public Health, 2019, 16, 3101.	1.2	32
13	Relationship Between Intermittent Hypoxia and Type 2 Diabetes in Sleep Apnea Syndrome. International Journal of Molecular Sciences, 2019, 20, 4756.	1.8	34
14	Proliferative Pathways of Vascular Smooth Muscle Cells in Response to Intermittent Hypoxia. International Journal of Molecular Sciences, 2019, 20, 2706.	1.8	18
15	Intermittent Hypoxia Up-Regulates Gene Expressions of Peptide YY (PYY), Glucagon-like Peptide-1 (GLP-1), and Neurotensin (NTS) in Enteroendocrine Cells. International Journal of Molecular Sciences, 2019, 20, 1849.	1.8	18
16	Intermittent Hypoxia Up-Regulates CCL2, RETN, and TNFα mRNAs in Adipocytes via Down-regulation of miR-452. International Journal of Molecular Sciences, 2019, 20, 1960.	1.8	38
17	Resveratrol‑induced REG III expression enhances chemo‑ and radiosensitivity in head and neck cancer in xenograft mice. Oncology Reports, 2019, 42, 436-442.	1.2	10
18	Up-regulation of POMC and CART mRNAs by intermittent hypoxia via GATA transcription factors in human neuronal cells. International Journal of Biochemistry and Cell Biology, 2018, 95, 100-107.	1.2	20

#	Article	IF	CITATIONS
19	Expression of human REG family genes in inflammatory bowel disease and their molecular mechanism. Immunologic Research, 2018, 66, 800-805.	1.3	16
20	Intermittent hypoxiaâ€induced epiregulin expression by <scp>IL</scp> â€6 production in human coronary artery smooth muscle cells. FEBS Open Bio, 2018, 8, 868-876.	1.0	14
21	Crucial role of Reg I from acinar-like cell cluster touching with islets (ATLANTIS) on mitogenesis of beta cells in EMC virus-induced diabetic mice. Biochemical and Biophysical Research Communications, 2018, 503, 963-969.	1.0	10
22	Intermittent hypoxia-induced cell proliferation via upregulations of interleukin-6 and epiregulin. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-2-36.	0.0	0
23	Significance of Interleukin-6/STAT Pathway for the Gene Expression of REG lα, a New Autoantigen in SjA¶gren's Syndrome Patients, in Salivary Duct Epithelial Cells. Clinical Reviews in Allergy and Immunology, 2017, 52, 351-363.	2.9	18
24	Expression of REG family genes in human inflammatory bowel diseases and its regulation. Biochemistry and Biophysics Reports, 2017, 12, 198-205.	0.7	38
25	Statins decrease vascular epithelial growth factor expression via down-regulation of receptor for advanced glycation end-products. Heliyon, 2017, 3, e00401.	1.4	10
26	From insulin synthesis to secretion: Alternative splicing of type 2 ryanodine receptor gene is essential for insulin secretion in pancreatic β cells. International Journal of Biochemistry and Cell Biology, 2017, 91, 176-183.	1.2	9
27	Up-regulation of selenoprotein P and HIP/PAP mRNAs in hepatocytes by intermittent hypoxia via down-regulation of miR-203. Biochemistry and Biophysics Reports, 2017, 11, 130-137.	0.7	30
28	Reg Gene Expression in Periosteum after Fracture and Its In Vitro Induction Triggered by IL-6. International Journal of Molecular Sciences, 2017, 18, 2257.	1.8	14
29	Effect of resveratrol on cancer progression through the REG III expression pathway in head and neck cancer cells. International Journal of Oncology, 2016, 49, 1553-1560.	1.4	10
30	Effects of Tooth Loss and the Apolipoprotein E ɛ4 Allele on Mild Memory Impairment in the Fujiwara-kyo Study of Japan: A Nested Case-Control Study. Journal of Alzheimer's Disease, 2016, 55, 575-583.	1.2	26
31	Role of regenerating gene I in claudin expression and barrier function in the small intestine. Translational Research, 2016, 173, 92-100.	2.2	17
32	Regulators of Beta-Cell Death and Regeneration. Pancreatic Islet Biology, 2016, , 125-158.	0.1	1
33	Regenerating gene (REG) product and its potential clinical usage. Expert Opinion on Therapeutic Targets, 2016, 20, 541-550.	1.5	38
34	Interleukin-6/STAT pathway is responsible for the induction of gene expression of REG lα, a new auto-antigen in SjĶgren׳s syndrome patients, in salivary duct epithelial cells. Biochemistry and Biophysics Reports, 2015, 2, 69-74.	0.7	19
35	Human retinal pigment epithelial cell proliferation by the combined stimulation of hydroquinone and advanced glycation end-products via up-regulation of VEGF gene. Biochemistry and Biophysics Reports, 2015, 2, 123-131.	0.7	22
36	Synergistic Activations of <i>REG I<i>α</i></i> and <i>REG I</i> <i>β</i> Promoters by IL-6 and Glucocorticoids through JAK/STAT Pathway in Human Pancreatic <i>β</i> Cells. Journal of Diabetes Research, 2015, 2015, 1-12.	1.0	27

#	Article	IF	CITATIONS
37	Regenerating Gene Protein as a Novel Autoantigen in the Pathogenesis of Sjögren's Syndrome. Antibodies, 2015, 4, 409-425.	1.2	0
38	Expression of <i>Reg</i> family genes in the gastrointestinal tract of mice treated with indomethacin. American Journal of Physiology - Renal Physiology, 2015, 308, G736-G744.	1.6	19
39	The CD38 genotype (rs1800561 (4693C>T): R140W) is associated with an increased risk of admission to the neonatal intensive care unit. Early Human Development, 2015, 91, 467-470.	0.8	3
40	Expression of Ins1 and Ins2 genes in mouse fetal liver. Cell and Tissue Research, 2014, 355, 303-314.	1.5	11
41	<i>Reg3G</i> gene expression in regenerating skeletal muscle and corresponding nerve. Muscle and Nerve, 2014, 49, 61-68.	1.0	14
42	The CD38-Cyclic ADP-Ribose System in Mammals: Historical Background, Pathophysiology and Perspective. Messenger (Los Angeles, Calif: Print), 2014, 3, 27-34.	0.3	13
43	Distinct Cell Clusters Touching Islet Cells Induce Islet Cell Replication in Association with Over-Expression of Regenerating Gene (REG) Protein in Fulminant Type 1 Diabetes. PLoS ONE, 2014, 9, e95110.	1.1	24
44	Pancreatic β cell proliferation by intermittent hypoxia via up-regulation of Reg family genes and HGF gene. Life Sciences, 2013, 93, 664-672.	2.0	52
45	Prevention of Reg I-induced β-cell apoptosis by IL-6/dexamethasone through activation of HGF gene regulation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2988-2995.	1.9	31
46	Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor. Experimental Cell Research, 2013, 319, 3042-3050.	1.2	39
47	Expression of REG III and prognosis in head and neck cancer. Oncology Reports, 2013, 30, 573-578.	1.2	18
48	Biomarkers for Diagnosis and Monitoring of Celiac Disease. Journal of Clinical Gastroenterology, 2013, 47, 308-313.	1.1	34
49	REG lα gene expression is linked with the poor prognosis of lung adenocarcinoma and squamous cell carcinoma patients via discrete mechanisms. Oncology Reports, 2013, 30, 2625-2631.	1.2	13
50	Attenuation of glucose-induced insulin secretion by intermittent hypoxia via down-regulation of CD38. Life Sciences, 2012, 90, 206-211.	2.0	66
51	Identification of a major enzyme for the synthesis and hydrolysis of cyclic ADP-ribose in amphibian cells and evolutional conservation of the enzyme from human to invertebrate. Molecular and Cellular Biochemistry, 2012, 366, 69-80.	1.4	5
52	Septic Shock Is Associated with Receptor for Advanced Glycation End Products Ligation of LPS. Journal of Immunology, 2011, 186, 3248-3257.	0.4	174
53	Expression Profile of the <i>REG</i> Gene Family in Colorectal Carcinoma. Journal of Histochemistry and Cytochemistry, 2011, 59, 106-115.	1.3	33
54	A novel ryanodine receptor expressed in pancreatic islets by alternative splicing from type 2 ryanodine receptor gene. Biochemical and Biophysical Research Communications, 2010, 397, 140-145.	1.0	42

#	Article	IF	CITATIONS
55	Thiazolidinediones inhibit REG Iα gene transcription in gastrointestinal cancer cells. Biochemical and Biophysical Research Communications, 2009, 379, 743-748.	1.0	18
56	Important role of heparan sulfate in postnatal islet growth and insulin secretion. Biochemical and Biophysical Research Communications, 2009, 383, 113-118.	1.0	77
57	Overexpression of Reg3α increases cell growth and the levels of cyclin D1 and CDK4 in insulinoma cells. Growth Factors, 2009, 27, 195-202.	0.5	29
58	REG I enhances chemo―and radiosensitivity in squamous cell esophageal cancer cells. Cancer Science, 2008, 99, 2491-2495.	1.7	26
59	FKBP12.6 disruption impairs glucose-induced insulin secretion. Biochemical and Biophysical Research Communications, 2008, 371, 735-740.	1.0	43
60	Generation of Nicotinic Acid Adenine Dinucleotide Phosphate and Cyclic ADP-Ribose by Glucagon-Like Peptide-1 Evokes Ca2+ Signal That Is Essential for Insulin Secretion in Mouse Pancreatic Islets. Diabetes, 2008, 57, 868-878.	0.3	123
61	CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 2007, 446, 41-45.	13.7	614
62	Cyclin D1 activation through ATF-2 in Reg-induced pancreatic Î ² -cell regeneration. FEBS Letters, 2006, 580, 585-591.	1.3	71
63	Identification of mouse orthologue of endogenous secretory receptor for advanced glycation end-products: structure, function and expression. Biochemical Journal, 2006, 396, 109-115.	1.7	57
64	RAGE Control of Diabetic Nephropathy in a Mouse Model. Diabetes, 2006, 55, 2510-2522.	0.3	228
65	Activation of regenerating gene Reg in rat and human hearts in response to acute stress. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H277-H284.	1.5	31
66	Expression of Reg/PAP family members during motor nerve regeneration in rat. Biochemical and Biophysical Research Communications, 2005, 332, 126-134.	1.0	50
67	Genomic organization, chromosomal localization, and promoter of human gene for FK506-binding protein 12.6. Gene, 2005, 360, 55-64.	1.0	13
68	REG Iα protein may function as a trophic and/or anti-apoptotic factor in the development of gastric cancer. Gastroenterology, 2005, 128, 642-653.	0.6	94
69	Cyclic ADP-ribose, a putative Ca2+-mobilizing second messenger, operates in submucosal gland acinar cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L69-L78.	1.3	20
70	Transgenic overexpression of Reg protein caused gastric cell proliferation and differentiation along parietal cell and chief cell lineages. Oncogene, 2004, 23, 3572-3579.	2.6	67
71	Expression of regenerating gene I in gastric adenocarcinomas. Cancer, 2004, 100, 1130-1136.	2.0	51
72	Molecular cloning, expression and chromosomal localization of a novel human REG family gene, REG III. Gene, 2004, 340, 161-170.	1.0	66

#	Article	IF	CITATIONS
73	REG gene expression is associated with the infiltrating growth of gastric carcinoma. Cancer, 2003, 98, 1394-1400.	2.0	49
74	Increased Expression of HIP/PAP and Regenerating Gene III in Human Inflammatory Bowel Disease and a Murine Bacterial Reconstitution Model. Inflammatory Bowel Diseases, 2003, 9, 162-170.	0.9	143
75	Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochemical Journal, 2003, 370, 1097-1109.	1.7	656
76	Deficit of CD38/cyclic ADP-ribose is differentially compensated in hearts by gender. Biochemical and Biophysical Research Communications, 2003, 312, 434-440.	1.0	33
77	Recent advances in physiological and pathological significance of NAD+metabolites: roles of poly(ADP-ribose) and cyclic ADP-ribose in insulin secretion and diabetogenesis. Nutrition Research Reviews, 2003, 16, 253-266.	2.1	9
78	CD38 Gene Disruption Inhibits the Contraction Induced by .ALPHAAdrenoceptor Stimulation in Mouse Aorta. Journal of Veterinary Medical Science, 2003, 65, 1325-1330.	0.3	24
79	Enhancement of Cell Viability in Cryopreserved Rat Vascular Grafts by Administration of Regenerating Gene <i>(Reg)</i> Inducers. Journal of Vascular Research, 2003, 40, 132-139.	0.6	13
80	Recent Advances in the Okamoto Model: The CD38-Cyclic ADP-Ribose Signal System and the Regenerating Gene Protein (Reg)-Reg Receptor System in Â-Cells. Diabetes, 2002, 51, S462-S473.	0.3	137
81	CD38 is the major enzyme responsible for synthesis of nicotinic acid‒adenine dinucleotide phosphate in mammalian tissues. Biochemical Journal, 2002, 362, 125.	1.7	57
82	CD38 is the major enzyme responsible for synthesis of nicotinic acid–adenine dinucleotide phosphate in mammalian tissues. Biochemical Journal, 2002, 362, 125-130.	1.7	73
83	Production and Characterization of Reg Knockout Mice: Reduced Proliferation of Pancreatic Â-Cells in Reg Knockout Mice. Diabetes, 2002, 51, S478-S483.	0.3	106
84	Reg protein is overexpressed in gastric cancer cells, where it activates a signal transduction pathway that converges on ERK1/2 to stimulate growth. FEBS Letters, 2002, 530, 59-64.	1.3	52
85	Pancreaticβ-Cell Death, Regeneration and Insulin Secretion: Roles of Poly(ADP-Ribose) Polymerase and Cyclic ADP-Ribose. International Journal of Experimental Diabetes Research, 2002, 3, 79-96.	1.0	37
86	Human REG I gene is up-regulated in intrahepatic cholangiocarcinoma and its precursor lesions. Hepatology, 2001, 33, 1036-1042.	3.6	59
87	Identification of Cyclic ADP-ribose-dependent Mechanisms in Pancreatic Muscarinic Ca2+ Signaling Using CD38 Knockout Mice. Journal of Biological Chemistry, 2001, 276, 649-655.	1.6	78
88	Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. Journal of Clinical Investigation, 2001, 108, 261-268.	3.9	430
89	Altered Stoichiometry of FKBP12.6 Versus Ryanodine Receptor as a Cause of Abnormal Ca ²⁺ Leak Through Ryanodine Receptor in Heart Failure. Circulation, 2000, 102, 2131-2136.	1.6	215
90	Identification of a Receptor for Reg (Regenerating Gene) Protein, a Pancreatic β-Cell Regeneration Factor. Journal of Biological Chemistry, 2000, 275, 10723-10726.	1.6	156

#	Article	IF	CITATIONS
91	Identification of a novel Reg family gene, Reg IIIδ, and mapping of all three types of Reg family gene in a 75 kilobase mouse genomic region. Gene, 2000, 246, 111-122.	1.0	73
92	Neutrophil chemoattractant 2β regulates expression of the Reg gene in injured gastric mucosa in rats. Gastroenterology, 2000, 119, 1610-1622.	0.6	61
93	CD38 Disruption Impairs Glucose-induced Increases in Cyclic ADP-ribose, [Ca2+] , and Insulin Secretion. Journal of Biological Chemistry, 1999, 274, 1869-1872.	1.6	200
94	Cyclic ADP-ribose and Inositol 1,4,5-Trisphosphate as Alternate Second Messengers for Intracellular Ca2+ Mobilization in Normal and Diabetic β-Cells. Journal of Biological Chemistry, 1998, 273, 2497-2500.	1.6	116
95	Muscarinic Receptor-mediated Dual Regulation of ADP-ribosyl Cyclase in NG108-15 Neuronal Cell Membranes. Journal of Biological Chemistry, 1997, 272, 31272-31277.	1.6	97
96	Lysine 129 of CD38 (ADP-ribosyl Cyclase/Cyclic ADP-ribose Hydrolase) Participates in the Binding of ATP to Inhibit the Cyclic ADP-ribose Hydrolase. Journal of Biological Chemistry, 1997, 272, 3879-3882.	1.6	57
97	Cyclic ADP-ribose Binds to FK506-binding Protein 12.6 to Release Ca2+ from Islet Microsomes. Journal of Biological Chemistry, 1997, 272, 3133-3136.	1.6	187
98	Role of Cyclic ADP-Ribose in ATP-activated Potassium Currents in Alveolar Macrophages. Journal of Biological Chemistry, 1997, 272, 16023-16029.	1.6	28
99	[28] Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38: Inhibition of hydrolysis by ATP and physiological significance. Methods in Enzymology, 1997, 280, 306-318.	0.4	27
100	Structure, chromosomal localization and expression of mouse genes encoding type III Reg, RegIIIα, RegIIIβ, RegIIIγ. Gene, 1997, 185, 159-168.	1.0	110
101	Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene, 1997, 186, 285-292.	1.0	81
102	NAD+-glycohydrolase fromStreptococcus pyogenesshows cyclic ADP-ribose forming activity. FEMS Microbiology Letters, 1995, 130, 201-204.	0.7	40
103	Regulatory Role of CD38 (ADP-ribosyl Cyclase/Cyclic ADP-ribose Hydrolase) in Insulin Secretion by Glucose in Pancreatic βCells. Journal of Biological Chemistry, 1995, 270, 30045-30050.	1.6	103
104	Requirement of Calmodulindependent Protein Kinase II in Cyclic ADP-ribose-mediated Intracellular Ca2+ Mobilization. Journal of Biological Chemistry, 1995, 270, 30257-30259.	1.6	99
105	The structure of the Aplysia kurodai gene encoding ADP-ribosyl cyclase, a second-messenger enzyme. Gene, 1995, 158, 213-218.	1.0	34
106	Cloning of a cDNA encoding rat bone marrow stromal cell antigen 1 (BST-1) from the islets of Langerhans. Gene, 1995, 165, 329-330.	1.0	27
107	ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1. FEBS Letters, 1994, 356, 244-248.	1.3	147
108	Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase / cyclic ADP-ribose hydrolase (homologue to human CD38) from islets of Langerhans. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1223, 160-162.	1.9	101

#	Article	IF	CITATIONS
109	Cyclic ADP-ribose modulates Ca2+ release channels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons. Neuron, 1994, 12, 1073-1079.	3.8	155