## Chao Cai

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4342264/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of ion beam etching on surface/subsurface structural defect evolution in fused silica optics.<br>Optical Materials, 2021, 116, 111096.                                                                | 1.7 | 8         |
| 2  | Correlation Among Particle Size Distribution, Subsurface Damages Distribution and Surface<br>Roughness in Optical Polishing Process. ECS Journal of Solid State Science and Technology, 2021, 10,<br>083011. | 0.9 | 2         |
| 3  | Effect of chemical activity of bulk and pad materials on the redeposition layer during polishing of glass. Thin Solid Films, 2021, 735, 138876.                                                              | 0.8 | 1         |
| 4  | Interrogation of the Reaction Mechanism in a Na–O <sub>2</sub> Battery Using <i>In Situ</i> Transmission Electron Microscopy. ACS Nano, 2020, 14, 3669-3677.                                                 | 7.3 | 39        |
| 5  | Gas-assisted transformation of gold from fcc to the metastable 4H phase. Nature Communications, 2020, 11, 552.                                                                                               | 5.8 | 17        |
| 6  | Direct Observation of Yolk–Shell Transforming to Gold Single Atoms and Clusters with Superior<br>Oxygen Evolution Reaction Efficiency. ACS Nano, 2019, 13, 8865-8871.                                        | 7.3 | 73        |
| 7  | Ultra-stable 4H-gold nanowires up to 800 °C in a vacuum. Journal of Materials Chemistry A, 2019, 7,<br>23812-23817.                                                                                          | 5.2 | 14        |
| 8  | Dumbbell to Core–Shell Structure Transformation of Ni–Au Nanoparticle Driven by External Stimuli.<br>Particle and Particle Systems Characterization, 2019, 36, 1800426.                                      | 1.2 | 2         |
| 9  | Effect of pad elastic modulus on polishing-induced subsurface damages distribution and laser-induced damage performance of fused silica optics. Optics Express, 2019, 27, 265.                               | 1.7 | 6         |
| 10 | Research on laser-induced damage resistance of fused silica optics by the fluid jet polishing method.<br>Applied Optics, 2016, 55, 2252.                                                                     | 2.1 | 9         |
| 11 | Synthesis of mono-phase La 2 Si 6 O 3 N 8 :Ce 3+ ,Tb 3+ blue-green phosphors with direct silicon nitridation and their photoluminescence properties. Materials Research Bulletin, 2015, 72, 83-89.           | 2.7 | 12        |
| 12 | A simple way to synthesize anatase with high thermal stability. Journal of Materials Science, 2015, 50, 5944-5951.                                                                                           | 1.7 | 12        |
| 13 | Synthesis of Red-Emitting CaAlSiN3:Eu2+Phosphors through a Cost-Effective Synthetic Route. ECS<br>Journal of Solid State Science and Technology, 2014, 3, R169-R172.                                         | 0.9 | 6         |
| 14 | Synthesis of nanosized AlN:Eu2+ phosphors using a metal-organic precursor method. Journal of<br>Materials Research, 2014, 29, 2466-2472.                                                                     | 1.2 | 2         |
| 15 | Preparation of high performance CaAlSiN3:Eu2+ phosphors with the aid of BaF2 flux. Journal of Alloys and Compounds, 2014, 613, 226-231.                                                                      | 2.8 | 24        |
| 16 | Enhanced luminescence and energy transfer in Ca2AlSi3O2N5:Eu2+ phosphors by co-doping with Ce3+.<br>Materials Research Bulletin, 2014, 55, 156-160.                                                          | 2.7 | 6         |
| 17 | Color tunable Sr2SiO4:Eu2+ phosphors through the modification of crystal structure. Journal of Materials Science: Materials in Electronics, 2013, 24, 4516-4521.                                             | 1.1 | 36        |
| 18 | Synthesis and photoluminescence properties of Eu2+-doped Ca2AlSi3O2N5 green phosphors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 635-638.               | 1.7 | 9         |

| #  | Article                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The photoluminescence of Ce-doped Lu4Si2O7N2 green phosphors. Materials Chemistry and Physics, 2009, 118, 270-272. | 2.0 | 22        |