Darryl A Knight

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4341906/publications.pdf

Version: 2024-02-01

		25423	39744
178	11,309	59	98
papers	citations	h-index	g-index
100	100	100	1.4252
188	188	188	14252
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Oncostatin M., 2022, , 723-727.		O
2	TLR7 agonist loaded airway epithelial targeting nanoparticles stimulate innate immunity and suppress viral replication in human bronchial epithelial cells. International Journal of Pharmaceutics, 2022, 617, 121586.	2.6	1
3	IL-25 blockade augments antiviral immunity during respiratory virus infection. Communications Biology, 2022, 5, 415.	2.0	9
4	Long hain fatty acids are bad in <scp>IPF</scp> , or are they?. Respirology, 2021, 26, 220-221.	1.3	0
5	IL- $4R\hat{l}\pm$ blockade reduces influenza-associated morbidity in a murine model of allergic asthma. Respiratory Research, 2021, 22, 75.	1.4	0
6	Reduced SOCS1 Expression in Lung Fibroblasts from Patients with IPF Is Not Mediated by Promoter Methylation or Mir155. Biomedicines, 2021, 9, 498.	1.4	1
7	Pharmacological HIF-1 stabilization promotes intestinal epithelial healing through regulation of $\hat{l}\pm$ -integrin expression and function. American Journal of Physiology - Renal Physiology, 2021, 320, G420-G438.	1.6	20
8	Regulation of Cellular Senescence Is Independent from Profibrotic Fibroblast-Deposited ECM. Cells, 2021, 10, 1628.	1.8	12
9	Inhibition of \hat{I}^2 -Catenin/CREB Binding Protein Signaling Attenuates House Dust Mite-Induced Goblet Cell Metaplasia in Mice. Frontiers in Physiology, 2021, 12, 690531.	1.3	2
10	Previous Influenza Infection Exacerbates Allergen Specific Response and Impairs Airway Barrier Integrity in Pre-Sensitized Mice. International Journal of Molecular Sciences, 2021, 22, 8790.	1.8	5
11	A cGAS-dependent response links DNA damage and senescence in alveolar epithelial cells: a potential drug target in IPF. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L859-L871.	1.3	17
12	Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Research Reviews, 2021, 70, 101405.	5.0	22
13	A Senescence Bystander Effect in Human Lung Fibroblasts. Biomedicines, 2021, 9, 1162.	1.4	12
14	TLR2-mediated innate immune priming boosts lung anti-viral immunity. European Respiratory Journal, 2021, 58, 2001584.	3.1	16
15	Dysregulated Notch Signaling in the Airway Epithelium of Children with Wheeze. Journal of Personalized Medicine, 2021, 11, 1323.	1.1	4
16	Airway mechanical compression: its role in asthma pathogenesis and progression. European Respiratory Review, 2020, 29, 190123.	3.0	20
17	The contribution of animal models to understanding the role of the immune system in human idiopathic pulmonary fibrosis. Clinical and Translational Immunology, 2020, 9, e1153.	1.7	20
18	Airway Epithelial Cell Immunity Is Delayed During Rhinovirus Infection in Asthma and COPD. Frontiers in Immunology, 2020, 11, 974.	2.2	60

#	Article	IF	Citations
19	Epithelial cell dysfunction, a major driver of asthma development. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1902-1917.	2.7	151
20	Inhibition of βâ€catenin/CBP signalling improves airway epithelial barrier function and suppresses CCL20 release. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1786-1789.	2.7	3
21	Assessing the unified airway hypothesis in children via transcriptional profiling of the airway epithelium. Journal of Allergy and Clinical Immunology, 2020, 145, 1562-1573.	1.5	35
22	Epithelial Mesenchymal Transition in Respiratory Disease. Chest, 2020, 157, 1591-1596.	0.4	18
23	Airway epithelial-targeted nanoparticles for asthma therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L500-L509.	1.3	23
24	Senescence of IPF Lung Fibroblasts Disrupt Alveolar Epithelial Cell Proliferation and Promote Migration in Wound Healing. Pharmaceutics, 2020, 12, 389.	2.0	30
25	Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clinical Science, 2020, 134, 2681-2706.	1.8	73
26	Self DNA perpetuates IPF lung fibroblast senescence in a cGAS-dependent manner. Clinical Science, 2020, 134, 889-905.	1.8	28
27	Aberrant cell migration contributes to defective airway epithelial repair in childhood wheeze. JCI Insight, 2020, 5, .	2.3	19
28	The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis. , 2019, 10, 419.		59
29	STAT3 Regulates the Onset of Oxidant-induced Senescence in Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 61-73.	1.4	52
30	Fibulin-1c regulates transforming growth factor–β activation in pulmonary tissue fibrosis. JCI Insight, 2019, 4, .	2.3	42
31	The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. International Journal of Biochemistry and Cell Biology, 2018, 97, 108-117.	1.2	49
32	Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches., 2018, 185, 155-169.		24
33	Visualisation of Multiple Tight Junctional Complexes in Human Airway Epithelial Cells. Biological Procedures Online, 2018, 20, 3.	1.4	27
34	Autophagy and the unfolded protein response promote profibrotic effects of TGF-β ₁ in human lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L493-L504.	1.3	100
35	Mitochondrial dysfunction contributes to the senescent phenotype of <scp>IPF</scp> lung fibroblasts. Journal of Cellular and Molecular Medicine, 2018, 22, 5847-5861.	1.6	65
36	International research collaboration: The way forward. Respirology, 2018, 23, 654-655.	1.3	4

#	Article	IF	CITATIONS
37	Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L162-L172.	1.3	114
38	Influenza A virus infection dysregulates the expression of microRNA-22 and its targets; CD147 and HDAC4, in epithelium of asthmatics. Respiratory Research, 2018, 19, 145.	1.4	47
39	Accumulation mode particles and LPS exposure induce TLR-4 dependent and independent inflammatory responses in the lung. Respiratory Research, 2018, 19, 15.	1.4	22
40	The fibrogenic actions of lung fibroblast-derived urokinase: a potential drug target in IPF. Scientific Reports, 2017, 7, 41770.	1.6	26
41	Inflammasomes in the lung. Molecular Immunology, 2017, 86, 44-55.	1.0	126
42	Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts. BMC Pulmonary Medicine, 2017, 17, 24.	0.8	23
43	Role for NLRP3 Inflammasome–mediated, IL-1β–Dependent Responses in Severe, Steroid-Resistant Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 283-297.	2.5	304
44	Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L772-L782.	1.3	30
45	Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. Journal of Pathology, 2017, 243, 510-523.	2.1	81
46	Divergent roles for Clusterin in Lung Injury and Repair. Scientific Reports, 2017, 7, 15444.	1.6	28
47	Mechanisms and treatments for severe, steroidâ€resistant allergic airway disease and asthma. Immunological Reviews, 2017, 278, 41-62.	2.8	119
48	Use of biologics to treat acute exacerbations and manage disease in asthma, COPD and IPF., 2017, 169, 1-12.		7
49	Transforming growth factor (TGF) \hat{l}^2 (sub>1 and Smad signalling pathways: A likely key to <scp>EMT</scp> $\hat{a} \in a$ ssociated (scp>COPD pathogenesis. Respirology, 2017, 22, 133-140.	1.3	74
50	Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics. Scientific Reports, 2017, 7, 17971.	1.6	77
51	The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis. Frontiers in Physiology, 2017, 8, 777.	1.3	162
52	Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells. PLoS ONE, 2017, 12, e0184260.	1.1	25
53	Acute cigarette smoke exposure activates apoptotic and inflammatory programs but a second stimulus is required to induce epithelial to mesenchymal transition in COPD epithelium. Respiratory Research, 2017, 18, 82.	1.4	24
54	Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight, 2017, 2, .	2.3	51

#	Article	IF	Citations
55	Animal models of <scp>COPD</scp> : <scp>W</scp> hat do they tell us?. Respirology, 2017, 22, 21-32.	1.3	122
56	The genetic and epigenetic landscapes of the epithelium in asthma. Respiratory Research, 2016, 17, 119.	1.4	72
57	Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability. Experimental Lung Research, 2016, 42, 380-395.	0.5	26
58	Airway epithelial repair in health and disease: Orchestrator or simply a player?. Respirology, 2016, 21, 438-448.	1.3	24
59	Elucidating novel disease mechanisms in severe asthma. Clinical and Translational Immunology, 2016, 5, e91.	1.7	28
60	Selective targeting of CREBâ€binding protein/βâ€catenin inhibits growth of and extracellular matrix remodelling by airway smooth muscle. British Journal of Pharmacology, 2016, 173, 3327-3341.	2.7	23
61	Reduced transforming growth factor \hat{l}^21 (TGF $\hat{a}\in\hat{l}^21$) in the repair of airway epithelial cells of children with asthma. Respirology, 2016, 21, 1219-1226.	1.3	14
62	Impaired Antiviral Stress Granule and IFN- \hat{l}^2 Enhanceosome Formation Enhances Susceptibility to Influenza Infection in Chronic Obstructive Pulmonary Disease Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 117-127.	1.4	44
63	Alpha-1 Antitrypsin Mitigates the Inhibition of Airway Epithelial Cell Repair by Neutrophil Elastase. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 341-349.	1.4	19
64	Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight, 2016, 1, .	2.3	100
65	Elevated H3K18 acetylation in airway epithelial cells of asthmatic subjects. Respiratory Research, 2015, 16, 95.	1.4	39
66	Versican V1 Overexpression Induces a Myofibroblast-Like Phenotype in Cultured Fibroblasts. PLoS ONE, 2015, 10, e0133056.	1.1	31
67	The Nucleotide-Binding Domain, Leucine-Rich Repeat Protein 3 Inflammasome/IL-1 Receptor I Axis Mediates Innate, but Not Adaptive, Immune Responses after Exposure to Particulate Matter under 10 μm. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 96-105.	1.4	79
68	Targeting PI3K-p $110\hat{l}\pm$ Suppresses Influenza Virus Infection in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1012-1023.	2.5	126
69	Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5-induced lung eosinophilia. Thorax, 2015, 70, 854-861.	2.7	90
70	Urban particulate matter increases human airway epithelial cell IL- $1\hat{l}^2$ secretion following scratch wounding and H1N1 influenza A exposurein vitro. Experimental Lung Research, 2015, 41, 353-362.	0.5	34
71	Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis. European Respiratory Journal, 2015, 46, 384-394.	3.1	93
72	Disruption of β-catenin/CBP signaling inhibits human airway epithelial–mesenchymal transition and repair. International Journal of Biochemistry and Cell Biology, 2015, 68, 59-69.	1.2	37

#	Article	lF	CITATIONS
73	Targeting Interleukin-13 with Tralokinumab Attenuates Lung Fibrosis and Epithelial Damage in a Humanized SCID Idiopathic Pulmonary Fibrosis Model. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 985-994.	1.4	105
74	Airway epithelial regulation of pulmonary immune homeostasis and inflammation. Clinical Immunology, 2014, 151, 1-15.	1.4	193
75	<scp>PM</scp> 10â€stimulated airway epithelial cells activate primary human dendritic cells independent of uric acid: Application of an ⟨i⟩in vitro⟨/i⟩ model system exposing dendritic cells to airway epithelial cellâ€conditioned media. Respirology, 2014, 19, 881-890.	1.3	13
76	Airway Epithelial Cells. , 2014, , 302-314.		0
77	Transcription Factor p63 Regulates Key Genes and Wound Repair in Human Airway Epithelial Basal Cells. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 978-988.	1.4	62
78	Are Lymphoid Follicles Important in the Pathogenesis of Chronic Obstructive Pulmonary Disease?. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 267-269.	2.5	1
79	Genome-wide microRNA and messenger RNA profiling in rodent liver development implicates mir302b and mir20a in repressing transforming growth factor-beta signaling. Hepatology, 2013, 57, 2491-2501.	3.6	17
80	Formation of a Stable Mimic of Ambient Particulate Matter Containing Viable Infectious Respiratory Syncytial Virus and Its Dry-Deposition Directly onto Cell Cultures. Analytical Chemistry, 2013, 85, 898-906.	3.2	34
81	Granzyme B Deficiency Exacerbates Lung Inflammation in Mice after Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 453-462.	1.4	23
82	miR-638 regulates gene expression networks associated with emphysematous lung destruction. Genome Medicine, 2013, 5, 114.	3.6	62
83	Editorial (Hot Topic :Advances in Industry for Chronic Respiratory Diseases). Inflammation and Allergy: Drug Targets, 2013, 12, 79-80.	1.8	0
84	STAT3. Proceedings of the American Thoracic Society, 2012, 9, 177-182.	3.5	50
85	Function of the Airway Epithelium in Asthma. Journal of Allergy, 2012, 2012, 1-2.	0.7	5
86	An Assessment of Epithelial and Mesenchymal Phenotypes in Experimental and Clinical Pulmonary Fibrosis. ISRN Pulmonology, 2012, 2012, 1-11.	0.3	0
87	The airway epithelium in asthma: Developmental issues that scar the airways for life?. Pulmonary Pharmacology and Therapeutics, 2012, 25, 420-426.	1.1	17
88	The role of the epithelium in chronic inflammatory airway disease. Pulmonary Pharmacology and Therapeutics, 2012, 25, 413-414.	1.1	2
89	STAT3-Mediated Signaling Dysregulates Lung Fibroblast-Myofibroblast Activation and Differentiation in UIP/IPF. American Journal of Pathology, 2012, 180, 1398-1412.	1.9	103
90	The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter. Journal of Allergy and Clinical Immunology, 2012, 129, 1116-1125.e6.	1.5	144

#	Article	IF	CITATIONS
91	Human airway epithelial cell innate immunity: relevance to asthma. Current Opinion in Immunology, 2012, 24, 740-746.	2.4	53
92	A gene expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK. Genome Medicine, 2012, 4, 67.	3.6	94
93	Granzyme B Cleaves Decorin, Biglycan and Soluble Betaglycan, Releasing Active Transforming Growth Factor-Î ² 1. PLoS ONE, 2012, 7, e33163.	1.1	86
94	Regional Differences in Susceptibiity of Bronchial Epithelium to Mesenchymal Transition and Inhibition by the Macrolide Antibiotic Azithromycin. PLoS ONE, 2012, 7, e52309.	1.1	19
95	Genetic partitioning of interleukinâ€6 signalling in mice dissociates Stat3 from Smad3â€mediated lung fibrosis. EMBO Molecular Medicine, 2012, 4, 939-951.	3.3	128
96	Year in review 2011: Asthma, chronic obstructive pulmonary disease and airway biology. Respirology, 2012, 17, 563-572.	1.3	6
97	Extracellular 14-3-3 from human lung epithelial cells enhances MMP-1 expression. Molecular and Cellular Biochemistry, 2012, 360, 261-270.	1.4	22
98	DNA Methylation Profiles of Airway Epithelial Cells and PBMCs from Healthy, Atopic and Asthmatic Children. PLoS ONE, 2012, 7, e44213.	1.1	101
99	Defective function at the epithelial junction: AÂnovel therapeutic frontier in asthma?. Journal of Allergy and Clinical Immunology, 2011, 128, 557-558.	1.5	14
100	STAT3 in tissue fibrosis: Is there a role in the lung?. Pulmonary Pharmacology and Therapeutics, 2011, 24, 193-198.	1.1	47
101	Minimally invasive multiphoton and harmonic generation imaging of extracellular matrix structures in lung airway and related diseases. Pulmonary Pharmacology and Therapeutics, 2011, 24, 487-496.	1.1	25
102	Apical Localization of Zinc Transporter ZnT4 in Human Airway Epithelial Cells and Its Loss in a Murine Model of Allergic Airway Inflammation. Nutrients, 2011, 3, 910-928.	1.7	20
103	Yearâ€inâ€review 2010: Asthma, COPD, cystic fibrosis and airway biology. Respirology, 2011, 16, 540-552.	1.3	5
104	Intrinsic Phenotypic Differences of Asthmatic Epithelium and Its Inflammatory Responses to Respiratory Syncytial Virus and Air Pollution. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 1090-1100.	1.4	181
105	Modeling Asthma in Mice. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 431-438.	1.4	26
106	Innate Inflammatory Responses of Pediatric Cystic Fibrosis Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 761-767.	1.4	89
107	The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A. Journal of Clinical Investigation, 2011, 121, 4420-4432.	3.9	69
108	Dual Organism Transcriptomics of Airway Epithelial Cells Interacting with Conidia of Aspergillus fumigatus. PLoS ONE, 2011, 6, e20527.	1.1	79

#	Article	IF	Citations
109	Granzyme K Activates Protease-Activated Receptor-1. PLoS ONE, 2011, 6, e21484.	1.1	56
110	Functional genomics of human bronchial epithelial cells directly interacting with conidia of Aspergillus fumigatus. BMC Genomics, 2010, 11, 358.	1.2	61
111	Serum amyloid P ameliorates radiation-induced oral mucositis and fibrosis. Fibrogenesis and Tissue Repair, 2010, 3, 11.	3.4	37
112	Potential role of stem cells in management of COPD. International Journal of COPD, 2010, 5, 81.	0.9	14
113	Inhibition of Wnt/ \hat{l}^2 -catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14309-14314.	3.3	412
114	Decreased Fibronectin Production Significantly Contributes to Dysregulated Repair of Asthmatic Epithelium. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 889-898.	2.5	132
115	Human Lung Parenchyma but Not Proximal Bronchi Produces Fibroblasts with Enhanced TGF-Î ² Signaling and α-SMA Expression. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 641-651.	1.4	59
116	Mesenchymal stem cells for repair of the airway epithelium in asthma. Expert Review of Respiratory Medicine, 2010, 4, 747-758.	1.0	19
117	Induction of Epithelial–Mesenchymal Transition in Primary Airway Epithelial Cells from Patients with Asthma by Transforming Growth Factor-β1. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 122-133.	2.5	336
118	A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness. Journal of Allergy and Clinical Immunology, 2009, 124, 222-229.	1.5	95
119	Fibroblasts. , 2009, , 193-200.		6
120	Characterization of Side Population Cells from Human Airway Epithelium. Stem Cells, 2008, 26, 2576-2585.	1.4	121
121	Dysregulated repair in asthmatic paediatric airway epithelial cells: the role of plasminogen activator inhibitorâ€1. Clinical and Experimental Allergy, 2008, 38, 1901-1910.	1.4	82
122	Selection of housekeeping genes for real-time PCR in atopic human bronchial epithelial cells. European Respiratory Journal, 2008, 32, 755-762.	3.1	64
123	Transforming Growth Factor \hat{l}^21 Induces $\hat{l}\pm\nu\hat{l}^23$ Integrin Expression in Human Lung Fibroblasts via a \hat{l}^23 Integrin-, c-Src-, and p38 MAPK-dependent Pathway. Journal of Biological Chemistry, 2008, 283, 12898-12908.	1.6	92
124	Secretion of IL-13 by Airway Epithelial Cells Enhances Epithelial Repair via HB-EGF. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 153-160.	1.4	100
125	Deleterious Role of TLR3 during Hyperoxia-induced Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1227-1237.	2.5	69
126	Airway modeling and remodeling in the pathogenesis of asthma. Current Opinion in Allergy and Clinical Immunology, 2008, 8, 44-48.	1.1	57

#	Article	IF	Citations
127	BMP-7 Does Not Protect against Bleomycin-Induced Lung or Skin Fibrosis. PLoS ONE, 2008, 3, e4039.	1.1	52
128	Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L278-L286.	1.3	57
129	Endotoxemia increases the clearance of mPEGylated 5000-MW quantum dots as revealed by multiphoton microvascular imaging. Journal of Biomedical Optics, 2007, 12, 064005.	1.4	11
130	Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. European Respiratory Journal, 2007, 29, 834-860.	3.1	344
131	The role of epithelial injury and repair in the origins of asthma. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 63-68.	1.1	83
132	Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L577-L584.	1.3	128
133	Concomitant activation of extracellular signal-regulated kinase and induction of COX-2 stimulates maximum prostaglandin E2 synthesis in human airway epithelial cells. Prostaglandins and Other Lipid Mediators, 2006, 81, 126-135.	1.0	13
134	Intrinsic Biochemical and Functional Differences in Bronchial Epithelial Cells of Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1110-1118.	2.5	175
135	Activation of proteinase-activated receptor-2 in mesothelial cells induces pleural inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L734-L740.	1.3	14
136	Structural changes in the airways in asthma: observations and consequences. Clinical Science, 2005, 108, 463-477.	1.8	153
137	A confocal microscopic study of solitary pulmonary neuroendocrine cells in human airway epithelium. Respiratory Research, 2005, 6, 115.	1.4	50
138	The use of non-bronchoscopic brushings to study the paediatric airway. Respiratory Research, 2005, 6, 53.	1.4	59
139	Higher Prostaglandin E2 Production by Dendritic Cells from Subjects with Asthma Compared with Normal Subjects. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 485-491.	2.5	30
140	$\hat{l}\pm\nu\hat{l}^2$ 3 Integrin Interacts with the Transforming Growth Factor \hat{l}^2 (TGF \hat{l}^2) Type II Receptor to Potentiate the Proliferative Effects of TGF \hat{l}^2 1 in Living Human Lung Fibroblasts. Journal of Biological Chemistry, 2004, 279, 37726-37733.	1.6	95
141	Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax, 2004, 59, 757-760.	2.7	213
142	Activated human dendritic cells express inducible cycloâ€oxygenase and synthesize prostaglandin E2 but not prostaglandin D2. Immunology and Cell Biology, 2004, 82, 47-54.	1.0	35
143	Comparison of the morphological and biochemical changes in normal human lung fibroblasts and fibroblasts derived from lungs of patients with idiopathic pulmonary fibrosis during FasL-induced apoptosis. Journal of Pathology, 2004, 202, 486-495.	2.1	95
144	Evaluation of experimental models of idiopathic pulmonary fibrosis. Drug Discovery Today: Disease Models, 2004, 1, 329-336.	1,2	6

#	Article	IF	CITATIONS
145	Does aberrant activation of the epithelial-mesenchymal trophic unit play a key role in asthma or is it an unimportant sideshow?. Current Opinion in Pharmacology, 2004, 4, 251-256.	1.7	29
146	Talniflumate (Genaera). Current Opinion in Investigational Drugs, 2004, 5, 557-62.	2.3	11
147	The role of gp130/IL-6 cytokines in the development of pulmonary fibrosis: critical determinants of disease susceptibility and progression?. , 2003, 99, 327-338.		44
148	The airway epithelium: Structural and functional properties in health and disease. Respirology, 2003, 8, 432-446.	1.3	476
149	Oncostatin M: an interleukin-6-like cytokine relevant to airway remodelling and the pathogenesis of asthma. Clinical and Experimental Allergy, 2003, 33, 1026-1032.	1.4	35
150	Fibroblasts Isolated from Normal Lungs and Those with Idiopathic Pulmonary Fibrosis Differ in Interleukin-6/gp130-Mediated Cell Signaling and Proliferation. American Journal of Pathology, 2003, 163, 345-354.	1.9	142
151	Macrophage Recognition and Phagocytosis of Apoptotic Fibroblasts Is Critically Dependent on Fibroblast-Derived Thrombospondin 1 and CD36. American Journal of Pathology, 2003, 162, 771-779.	1.9	93
152	Inverse Effects of Interleukin-6 on Apoptosis of Fibroblasts from Pulmonary Fibrosis and Normal Lungs. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 490-498.	1.4	150
153	Activation of Protease-Activated Receptor (PAR)-1, PAR-2, and PAR-4 Stimulates IL-6, IL-8, and Prostaglandin E2 Release from Human Respiratory Epithelial Cells. Journal of Immunology, 2002, 168, 3577-3585.	0.4	362
154	Increased permeability of asthmatic epithelial cells to pollutants. Does this mean that they are intrinsically abnormal?. Clinical and Experimental Allergy, 2002, 32, 1263-1265.	1.4	15
155	Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts. British Journal of Pharmacology, 2002, 136, 793-801.	2.7	85
156	Protease-activated receptors in human airways: Upregulation of PAR-2 in respiratory epithelium from patients with asthma. Journal of Allergy and Clinical Immunology, 2001, 108, 797-803.	1.5	251
157	Leukaemia Inhibitory Factor (LIF): a Cytokine of Emerging Importance in Chronic Airway Inflammation. Pulmonary Pharmacology and Therapeutics, 2001, 14, 169-176.	1.1	46
158	Epithelium–fibroblast interactions in response to airway inflammation. Immunology and Cell Biology, 2001, 79, 160-164.	1.0	102
159	Role of PGE2 in protease-activated receptor-1, â°'2 and â°'4 mediated relaxation in the mouse isolated trachea. British Journal of Pharmacology, 2001, 132, 93-100.	2.7	67
160	Lipopolysaccharide Inhibits the Late-Phase Response to Allergen by Altering Nitric Oxide Synthase Activity and Interleukin-10. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 640-646.	1.4	35
161	Regulation of human lung fibroblast phenotype and function by vitronectin and vitronectin integrins. Journal of Cell Science, 2001, 114, 3507-3516.	1.2	54
162	Regulation of human lung fibroblast phenotype and function by vitronectin and vitronectin integrins. Journal of Cell Science, 2001, 114, 3507-16.	1.2	47

#	Article	IF	CITATIONS
163	Leukaemia inhibitory factor (LIF) upregulates excitatory non-adrenergic non-cholinergic and maintains cholinergic neural function in tracheal explants. British Journal of Pharmacology, 2000, 130, 975-979.	2.7	16
164	Oncostatin M synergises with house dust mite proteases to induce the production of PGE2 from cultured lung epithelial cells. British Journal of Pharmacology, 2000, 131, 465-472.	2.7	19
165	Leukemia Inhibitory Factor (LIF) and LIF Receptor in Human Lung. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 834-841.	1.4	66
166	Leukemia inhibitory factor is synthesized and released by human eosinophils and modulates activation state and chemotaxisa †a †a †a †a ta Journal of Allergy and Clinical Immunology, 1999, 104, 136-144.	1.5	27
167	Expression and localization of COX-2 in human airways and cultured airway epithelial cells. European Respiratory Journal, 1999, 13, 999.	3.1	38
168	Adenosine A3 receptor expression and function in eosinophils American Journal of Respiratory Cell and Molecular Biology, 1997, 16, 531-537.	1.4	155
169	Adenosine A3 receptor stimulation inhibits migration of human eosinophils. Journal of Leukocyte Biology, 1997, 62, 465-468.	1.5	81
170	Histamine-induced contraction of human isolated bronchus is enhanced by endogenous prostaglandin F2α and activation of TP receptors. European Journal of Pharmacology, 1997, 319, 261-267.	1.7	6
171	Localization of leukaemia inhibitory factor to airway epithelium and its amplification of contractile responses to tachykinins. British Journal of Pharmacology, 1997, 120, 883-891.	2.7	19
172	Epithelium-derived inhibitory prostaglandins modulate human bronchial smooth muscle responses to histamine. European Journal of Pharmacology, 1995, 272, 1-11.	1.7	23
173	Prostaglandin E2, but not prostacyclin inhibits histamine-induced contraction of human bronchial smooth muscle. European Journal of Pharmacology, 1995, 272, 13-19.	1.7	28
174	The respiratory epithelium and airway smooth muscle homeostasis: its relevance to asthma. Clinical and Experimental Allergy, 1994, 24, 698-706.	1.4	19
175	Histamine Tachyphylaxis in Human Airway Smooth Muscle: The Role of H2-Receptors and the Bronchial Epithelium. The American Review of Respiratory Disease, 1992, 146, 137-140.	2.9	31
176	The interaction of acetylcholine and histamine on human bronchial smooth muscle contraction. European Respiratory Journal, 1991, 4, 985-91.	3.1	5
177	The effect of epithelium removal on human bronchial smooth muscle responsiveness to acetylcholine and histamine. Pulmonary Pharmacology, 1990, 3, 198-202.	0.5	22
178	\hat{l}^2 -Adrenoceptor desensitization in guinea-pig isolated trachea. European Journal of Pharmacology, 1988, 157, 135-145.	1.7	26