Pan Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4341608/pan-liu-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

268	36,003	87	188
papers	citations	h-index	g-index
277	41,711 ext. citations	12.8	7.54
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
268	Universal scaling law of glass rheology Nature Materials, 2022,	27	2
267	Deformation behavior of a nanoporous metallic glass at room temperature. <i>International Journal of Plasticity</i> , 2022 , 152, 103232	7.6	2
266	Tracking the sliding of grain boundaries at the atomic scale <i>Science</i> , 2022 , 375, 1261-1265	33.3	12
265	The Universal Growth of Ultrathin Perovskite Single Crystals Advanced Materials, 2022, e2108396	24	О
264	Copper-involved highly efficient oxygen reduction reaction in both alkaline and acidic media. <i>Chemical Engineering Journal</i> , 2022 , 437, 135377	14.7	2
263	Anionic Redox Regulated via Metal-Ligand Combinations in Layered Sulfides. <i>Advanced Materials</i> , 2021 , e2107353	24	1
262	Ultrafast Single-Crystal-to-Single-Crystal Transformation from Metal-Organic Framework to 2D Hydroxide. <i>Advanced Materials</i> , 2021 , e2106400	24	2
261	Vapor phase dealloying kinetics of MnZn alloys. <i>Acta Materialia</i> , 2021 , 212, 116916	8.4	3
260	Hidden Effects of Negative Stacking Fault Energies in Complex Concentrated Alloys. <i>Physical Review Letters</i> , 2021 , 126, 255502	7.4	2
259	Vacancy-driven shear localization in silicon nitride. Scripta Materialia, 2021, 190, 163-167	5.6	O
258	Enhanced pseudocapacitive energy storage of oxides grown on nanoporous alloys by solid solution. <i>Chemical Engineering Journal</i> , 2021 , 405, 126632	14.7	2
257	Visualizing the {110} surface structure of equilibrium-form ZIF-8 crystals by low-dose Cs-corrected TEM. <i>Nanoscale</i> , 2021 , 13, 13215-13219	7.7	1
256	Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale, 2021 , 13, 10916-10924	7.7	7
255	Atomic-level-designed copper atoms on hierarchically porous gold architectures for high-efficiency electrochemical CO2 reduction. <i>Science China Materials</i> , 2021 , 64, 1900-1909	7.1	11
254	Dislocation-mediated shear amorphization in boron carbide. <i>Science Advances</i> , 2021 , 7,	14.3	14
253	3D Bimodal Porous Amorphous Carbon with Self-Similar Porosity by Low-Temperature Sequential Chemical Dealloying. <i>Chemistry of Materials</i> , 2021 , 33, 1013-1021	9.6	3
252	Effect of femtosecond laser irradiation on yield strength of nanoporous silver materials. <i>Materials Letters</i> , 2021 , 294, 129800	3.3	

(2020-2021)

251	Fast attenuation of high-frequency acoustic waves in bicontinuous nanoporous gold. <i>Applied Physics Letters</i> , 2021 , 119, 063101	3.4	
250	The effect of nano-silica on the properties of magnesium oxychloride cement. <i>Advances in Cement Research</i> , 2021 , 33, 413-422	1.8	
249	Hybridized intercalation of CoMoS4 in interlayer-expanded cobalt-LMO nanosheets as high active bifunctional catalysts in Zn-air battery. <i>Electrochimica Acta</i> , 2021 , 391, 138980	6.7	2
248	2D Nanosheets of Mo2C/CoMoS4 as Active Electrocatalyst for Water Splitting. <i>Physica Status Solidi</i> (A) Applications and Materials Science, 2021 , 218, 2100377	1.6	2
247	Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc-air batteries. <i>Nanoscale</i> , 2021 , 13, 10862-10870	7.7	6
246	3D Continuously Porous Graphene for Energy Applications. <i>Advanced Materials</i> , 2021 , e2108750	24	6
245	Synthesis of Fluoride-Substituted Layered Perovskites ZnMoO with an Enhanced Photocatalytic Activity <i>ACS Applied Materials & amp; Interfaces</i> , 2021 ,	9.5	1
244	Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. <i>Nature Communications</i> , 2020 , 11, 2701	17.4	105
243	Solid solution softening in a Al0.1CoCrFeMnNi high-entropy alloy. <i>Scripta Materialia</i> , 2020 , 186, 63-68	5.6	5
242	Adsorbate-Mediated Deposition of Noble-Metal Nanoparticles on Carbon Substrates for Electrocatalysis. <i>ACS Applied Energy Materials</i> , 2020 , 3, 6460-6465	6.1	4
241	Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design. ACS Nano, 2020 , 14, 4374-43	182 6.7	49
241 240	Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design. <i>ACS Nano</i> , 2020 , 14, 4374-43 Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li-O Batteries: Cell Performances and Operando STEM Observations. <i>Nano Letters</i> , 2020 , 20, 2183-2190	11.5	
	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li-O Batteries: Cell	,	
240	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li-O Batteries: Cell Performances and Operando STEM Observations. <i>Nano Letters</i> , 2020 , 20, 2183-2190 Dealloying Kinetics of AgAu Nanoparticles by Liquid-Cell Scanning Transmission Electron	11.5	8
240	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li-O Batteries: Cell Performances and Operando STEM Observations. <i>Nano Letters</i> , 2020 , 20, 2183-2190 Dealloying Kinetics of AgAu Nanoparticles by Liquid-Cell Scanning Transmission Electron Microscopy. <i>Nano Letters</i> , 2020 , 20, 1944-1951	11.5	8
240239238	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li-O Batteries: Cell Performances and Operando STEM Observations. <i>Nano Letters</i> , 2020 , 20, 2183-2190 Dealloying Kinetics of AgAu Nanoparticles by Liquid-Cell Scanning Transmission Electron Microscopy. <i>Nano Letters</i> , 2020 , 20, 1944-1951 Assembly of 1T@MoS based fibers for flexible energy storage. <i>Nanoscale</i> , 2020 , 12, 6562-6570 Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold	11.5 11.5 7.7	8 24 7
240239238237	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li-O Batteries: Cell Performances and Operando STEM Observations. <i>Nano Letters</i> , 2020 , 20, 2183-2190 Dealloying Kinetics of AgAu Nanoparticles by Liquid-Cell Scanning Transmission Electron Microscopy. <i>Nano Letters</i> , 2020 , 20, 1944-1951 Assembly of 1TGMoS based fibers for flexible energy storage. <i>Nanoscale</i> , 2020 , 12, 6562-6570 Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. <i>Nature Communications</i> , 2020 , 11, 1011 Zinc-Mediated Template Synthesis of Fe-N-C Electrocatalysts with Densely Accessible Fe-N Active	11.5 11.5 7.7 17.4	8 24 7

233	Scalable synthesis of nanoporous boron for high efficiency ammonia electrosynthesis. <i>Materials Today</i> , 2020 , 38, 58-66	21.8	15
232	Nanoporous Au-Sn with solute strain for simultaneously enhanced selectivity and durability during electrochemical CO2 reduction. <i>Journal of Materials Science and Technology</i> , 2020 , 43, 154-160	9.1	8
231	Inlaid ReS Quantum Dots in Monolayer MoS. ACS Nano, 2020, 14, 899-906	16.7	12
230	High-Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition-Metal Dichalcogenide Nanosheets. <i>Angewandte Chemie</i> , 2020 , 132, 3629-3636	3.6	10
229	High-Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition-Metal Dichalcogenide Nanosheets. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3601-3608	16.4	65
228	Dual-Metal Interbonding as the Chemical Facilitator for Single-Atom Dispersions. <i>Advanced Materials</i> , 2020 , 32, e2003484	24	40
227	Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. <i>Energy and Environmental Science</i> , 2020 , 13, 2849-2855	35.4	44
226	Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 175	5 58- 57	563
225	Monolithic Nanoporous Zn Anode for Rechargeable Alkaline Batteries. <i>ACS Nano</i> , 2020 , 14, 2404-2411	16.7	30
224	Electron beam irradiation enhanced varistor properties in ZnO nanowire. <i>Applied Physics Letters</i> , 2020 , 117, 021903	3.4	5
223	Structures and Structural Evolution of Sublayer Surfaces of Metal-Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21419-21424	16.4	9
222	Dirac Fermion Kinetics in 3D Curved Graphene. <i>Advanced Materials</i> , 2020 , 32, e2005838	24	10
221	Iron clusters boosted performance in electrocatalytic carbon dioxide conversion. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 21661-21667	13	6
220	Structures and Structural Evolution of Sublayer Surfaces of Metal©rganic Frameworks. Angewandte Chemie, 2020 , 132, 21603-21608	3.6	Ο
219	Twisted 1T TaS bilayers by lithiation exfoliation. <i>Nanoscale</i> , 2020 , 12, 18031-18038	7.7	1
218	A high-performance layered Cr-Based cathode for sodium-ion batteries. <i>Nano Energy</i> , 2020 , 67, 104215	17.1	26
217	Operando Observations of SEI Film Evolution by Mass-Sensitive Scanning Transmission Electron Microscopy. <i>Advanced Energy Materials</i> , 2019 , 9, 1902675	21.8	39
216	Deformation behavior of ultrahard Al0.3CoCrFeNi high-entropy alloy treated by plasma nitriding. <i>Materials Letters</i> , 2019 , 255, 126566	3.3	3

215	Unprecedented Electromagnetic Interference Shielding from Three-Dimensional Bi-continuous Nanoporous Graphene. <i>Matter</i> , 2019 , 1, 1077-1087	12.7	28
214	Anionic redox reaction in layered NaCrTiS through electron holes formation and dimerization of S-S. <i>Nature Communications</i> , 2019 , 10, 4458	17.4	26
213	Unveiling Electronic Properties in Metal-Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16810-16816	16.4	107
212	Bioinspired FeC@C as Highly Efficient Electrocatalyst for Nitrogen Reduction Reaction under Ambient Conditions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 40062-40068	9.5	31
211	3D bicontinuous nanoporous plasmonic heterostructure for enhanced hydrogen evolution reaction under visible light. <i>Nano Energy</i> , 2019 , 58, 552-559	17.1	23
210	Direct atomic identification of cation migration induced gradual cubic-to-hexagonal phase transition in Ge2Sb2Te5. <i>Communications Chemistry</i> , 2019 , 2,	6.3	18
209	A Phthalocyanine-Based Layered Two-Dimensional Conjugated Metal Drganic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 10	7 87 -10	7 9 2
208	A Phthalocyanine-Based Layered Two-Dimensional Conjugated Metal-Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10677-10682	16.4	160
207	The atomic origin of nickel-doping-induced catalytic enhancement in MoS for electrochemical hydrogen production. <i>Nanoscale</i> , 2019 , 11, 7123-7128	7.7	52
206	Temperature-dependent compression behavior of an Al0.5CoCrCuFeNi high-entropy alloy. <i>Materialia</i> , 2019 , 5, 100243	3.2	10
205	Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. <i>Nature Communications</i> , 2019 , 10, 1392	17.4	280
204	Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn-Air Batteries. <i>Advanced Materials</i> , 2019 , 31, e1900843	24	170
203	Effects of mixing enthalpy and cooling rate on phase formation of AlxCoCrCuFeNi high-entropy alloys. <i>Materialia</i> , 2019 , 6, 100292	3.2	17
202	Room-temperature superplasticity in Au nanowires and their atomistic mechanisms. <i>Nanoscale</i> , 2019 , 11, 8727-8735	7.7	7
201	Bent strain values affect the plastic deformation behaviours of twinned Ni NWs. <i>Scripta Materialia</i> , 2019 , 167, 1-5	5.6	5
200	Lithium-Doping Stabilized High-Performance P2-NaLiFeMnO Cathode for Sodium Ion Batteries. Journal of the American Chemical Society, 2019, 141, 6680-6689	16.4	96
199	Capturing Reversible Cation Migration in Layered Structure Materials for Na-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1900189	21.8	29
198	Nanoporous high-entropy alloys for highly stable and efficient catalysts. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6499-6506	13	105

197	Extraordinary tensile strength and ductility of scalable nanoporous graphene. <i>Science Advances</i> , 2019 , 5, eaat6951	14.3	49
196	3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media. <i>Nano Energy</i> , 2019 , 59, 146-153	17.1	88
195	Efficient alkaline hydrogen evolution on atomically dispersed NiNx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. <i>Energy and Environmental Science</i> , 2019 , 12, 149-156	35.4	299
194	Observation of superconductivity in pressurized 2M WSe2 crystals. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8551-8555	7.1	12
193	Experimental observations of the mechanisms associated with the high hardening and low strain to failure of magnesium. <i>Materialia</i> , 2019 , 8, 100504	3.2	6
192	Fast coalescence of metallic glass nanoparticles. <i>Nature Communications</i> , 2019 , 10, 5249	17.4	21
191	Flexible supercapacitor electrodes fabricated by dealloying nanocrystallized Al-Ni-Co-Y-Cu metallic glasses. <i>Journal of Alloys and Compounds</i> , 2019 , 772, 164-172	5.7	14
190	Atomic structure and mechanical response of coincident stacking faults in boron suboxide. <i>Materials Research Letters</i> , 2019 , 7, 75-81	7.4	5
189	Structural Determination and Nonlinear Optical Properties of New 1T?-Type MoS Compound. Journal of the American Chemical Society, 2019 , 141, 790-793	16.4	51
188	Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes. <i>Advanced Materials</i> , 2019 , 31, e1805334	24	173
187	Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. <i>Acta Materialia</i> , 2019 , 165, 99-108	8.4	23
186	Atomic scale structural characterization of B2 phase precipitated along FCC twin boundary in a CoCrFeNiAl0.3 high entropy alloy. <i>Scripta Materialia</i> , 2019 , 162, 161-165	5.6	15
185	Free-standing nanoporous gold for direct plasmon enhanced electro-oxidation of alcohol molecules. <i>Nano Energy</i> , 2019 , 56, 286-293	17.1	27
184	Lithium intercalation into bilayer graphene. <i>Nature Communications</i> , 2019 , 10, 275	17.4	74
183	Flaw-free nanoporous Ni for tensile properties. <i>Acta Materialia</i> , 2019 , 166, 402-412	8.4	16
182	Three-Dimensional Nanoporous CoSP Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 3880-3888	9.5	47
181	Vapor phase dealloying: A versatile approach for fabricating 3D porous materials. <i>Acta Materialia</i> , 2019 , 163, 161-172	8.4	20
180	Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. <i>Angewandte Chemie</i> , 2018 , 130, 6223-6227	3.6	29

(2018-2018)

Atomic origins of high electrochemical CO reduction efficiency on nanoporous gold. <i>Nanoscale</i> , 2018 , 10, 8372-8376	7.7	39
Fluorine-Free Synthesis of High-Purity Ti C T (T=OH, O) via Alkali Treatment. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6115-6119	16.4	387
Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. <i>Scientific Reports</i> , 2018 , 8, 3134	4.9	20
Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. <i>Science Bulletin</i> , 2018 , 63, 37	6- <u>3</u> 8. 4	50
Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide. <i>Energy and Environmental Science</i> , 2018 , 11, 299-305	35.4	90
Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. <i>Nature Communications</i> , 2018 , 9, 276	17.4	68
Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. <i>Advanced Materials</i> , 2018 , 30, 1706279	24	390
Synthesizing 1T-1H Two-Phase MoWS Monolayers by Chemical Vapor Deposition. <i>ACS Nano</i> , 2018 , 12, 1571-1579	16.7	48
Three-dimensional porous graphene networks expand graphene-based electronic device applications. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 6024-6033	3.6	31
Nanoporous metal by dealloying for electrochemical energy conversion and storage. <i>MRS Bulletin</i> , 2018 , 43, 43-48	3.2	69
Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. <i>Nano Energy</i> , 2018 , 45, 273-279	17.1	45
Three-Dimensional Nanoporous Heterojunction of Monolayer MoS2@rGO for Photoenhanced Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2183-2191	6.1	19
Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. <i>Nano Energy</i> , 2018 , 49, 354-362	17.1	54
Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. <i>Nano Research</i> , 2018 , 11, 4123-4132	10	32
Anisotropic and Multicomponent Nanostructures by Controlled Symmetry Breaking of Metal Halide Intermediates. <i>Nano Letters</i> , 2018 , 18, 2324-2328	11.5	4
Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery. <i>Nano Energy</i> , 2018 , 47, 427-433	17.1	34
Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi. <i>Acta Materialia</i> , 2018 , 144, 107-115	8.4	98
Low-Temperature Carbide-Mediated Growth of Bicontinuous Nitrogen-Doped Mesoporous Graphene as an Efficient Oxygen Reduction Electrocatalyst. <i>Advanced Materials</i> , 2018 , 30, e1803588	24	57
	Pluorine-Free Synthesis of High-Purity Ti C T (T=OH, O) via Alkali Treatment. Angewandte Chemie-International Edition, 2018, 57, 6115-6119 Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Scientific Reports, 2018, 8, 3134 Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. Science Bulletin, 2018, 63, 37 Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide. Energy and Environmental Science, 2018, 11, 299-305 Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. Nature Communications, 2018, 9, 276 Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Advanced Materials, 2018, 30, 1706279 Synthesizing 1T-1H Two-Phase MoWS Monolayers by Chemical Vapor Deposition. ACS Nano, 2018, 12, 1571-1579 Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 6024-6033 Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bulletin, 2018, 43, 43-48 Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy, 2018, 45, 273-279 Three-Dimensional Nanoporous Heterojunction of Monolayer Mos2@rCO for Photoenhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 2183-2191 Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49, 354-362 Controllable defects implantation in Mos2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Research, 2018, 11, 4123-4132 Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery. Nano Energy, 2018, 47, 427-433 Transmission electron microscopy characterization of dislocation structure in a face-centered	Fluorine-Free Synthesis of High-Purity TI CT (T=OH, O) via Alkali Treatment. Angewandte Chemie-International Edition, 2018, 57, 6115-6119 Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Scientific Reports, 2018, 8, 3134 Agreement of Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. Science Bulletin, 2018, 63, 376-884 Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide. Energy and Environmental Science, 2018, 11, 299-305 Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. Nature Communications, 2018, 9, 276 Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Advanced Materials, 2018, 30, 1706279 Synthesizing 1T-1H Two-Phase MoWS Monolayers by Chemical Vapor Deposition. ACS Nano, 2018, 12, 1571-1579 Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 6024-6033 Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bulletin, 2018, 43, 43-48 Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy . 2018, 45, 273-279 Three-Dimensional Nanoporous Heterojunction of Monolayer Mos2@rCO for Photoenhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 2183-2191 Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49, 354-362 Controllable defects implantation in Mos2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Research, 2018, 11, 4123-4132 Anisotropic and Multicomponent Nanostructures by Controlled Symmetry Breaking of Metal Halide Intermediates. Nano Letters, 2018, 18, 2324-2328 Transmission electron microscopy characterization of dislocation

161	Locating Si atoms in Si-doped boron carbide: A route to understand amorphization mitigation mechanism. <i>Acta Materialia</i> , 2018 , 157, 106-113	8.4	27
160	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. <i>Angewandte Chemie</i> , 2018 , 130, 13486-13491	3.6	8
159	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13302-13307	16.4	51
158	Deformation behaviour of 18R long-period stacking ordered structure in an Mg-Zn-Y alloy under shock loading. <i>Intermetallics</i> , 2018 , 102, 21-25	3.5	3
157	Quantum Dots of 1T Phase Transitional Metal Dichalcogenides Generated via Electrochemical Li Intercalation. <i>ACS Nano</i> , 2018 , 12, 308-316	16.7	80
156	Structure Re-determination and Superconductivity Observation of Bulk 1T MoS2. <i>Angewandte Chemie</i> , 2018 , 130, 1246-1249	3.6	33
155	Structure Re-determination and Superconductivity Observation of Bulk 1T MoS. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1232-1235	16.4	88
154	Microstructural origins for a strong and ductile Al0.1CoCrFeNi high-entropy alloy with ultrafine grains. <i>Materialia</i> , 2018 , 4, 395-405	3.2	24
153	Graphene-based quasi-solid-state lithiumBxygen batteries with high energy efficiency and a long cycling lifetime. NPG Asia Materials, 2018, 10, 1037-1045	10.3	24
152	Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide. <i>Physical Review Letters</i> , 2018 , 121, 145504	7.4	41
151	Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses. <i>Nature Communications</i> , 2018 , 9, 3965	17.4	65
150	Low and room temperatures tensile properties of a nanoprecipitate-strengthened (FeCoCr)40Ni40Al10Cu10 high-entropy alloy. <i>Materials Characterization</i> , 2018 , 145, 177-184	3.9	4
149	One-Dimensional Atomic Segregation at Semiconductor-Metal Interfaces of Polymorphic Transition Metal Dichalcogenide Monolayers. <i>Nano Letters</i> , 2018 , 18, 6157-6163	11.5	2
148	Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells. <i>Biosensors and Bioelectronics</i> , 2017 , 88, 41-47	11.8	15
147	Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. <i>Intermetallics</i> , 2017 , 85, 90-97	3.5	64
146	Noble-Metal-Free Metallic Glass as a Highly Active and Stable Bifunctional Electrocatalyst for Water Splitting. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1601086	4.6	48
145	Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. <i>Nature</i> , 2017 , 544, 460-4	654 0.4	512
144	Tunable Nanoporous Metallic Glasses Fabricated by Selective Phase Dissolution and Passivation for Ultrafast Hydrogen Uptake. <i>Chemistry of Materials</i> , 2017 , 29, 4478-4483	9.6	19

(2017-2017)

143	Full Performance Nanoporous Graphene Based Li-O2 Batteries through Solution Phase Oxygen Reduction and Redox-Additive Mediated Li2O2 Oxidation. <i>Advanced Energy Materials</i> , 2017 , 7, 1601933	21.8	57
142	Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017 , 8, 15437	17.4	583
141	High-quality single-layer nanosheets of MS2 (M = Mo, Nb, Ta, Ti) directly exfoliated from AMS2 (A = Li, Na, K) crystals. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5977-5983	7.1	23
140	Structure and mechanical properties of boron-rich boron carbides. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 4514-4523	6	60
139	Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. <i>Nature Communications</i> , 2017 , 8, 14885	17.4	40
138	Enhanced Superconductivity in Restacked TaS Nanosheets. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4623-4626	16.4	62
137	Observation of superconductivity in 1T?-MoS2 nanosheets. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10855-10860	7.1	60
136	Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. <i>Nature Communications</i> , 2017 , 8, 1066	17.4	45
135	Chemical Selectivity at Grain Boundary Dislocations in Monolayer MoWS Transition Metal Dichalcogenides. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	7
134	Direct Observations of the Formation and Redox-Mediator-Assisted Decomposition of Li O in a Liquid-Cell Li-O Microbattery by Scanning Transmission Electron Microscopy. <i>Advanced Materials</i> , 2017 , 29, 1702752	24	41
133	Tuning Surface Structure of 3D Nanoporous Gold by Surfactant-Free Electrochemical Potential Cycling. <i>Advanced Materials</i> , 2017 , 29, 1703601	24	40
132	Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. <i>Nature Communications</i> , 2017 , 8, 135	17.4	166
131	Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 25314-25318	13	94
130	Correlation between Local Structure Order and Spatial Heterogeneity in a Metallic Glass. <i>Physical Review Letters</i> , 2017 , 119, 215501	7.4	77
129	Microstructural characterization of boron-rich boron carbide. <i>Acta Materialia</i> , 2017 , 136, 202-214	8.4	58
128	A nanoporous nickel catalyst for selective hydrogenation of carbonates into formic acid in water. <i>Green Chemistry</i> , 2017 , 19, 716-721	10	35
127	Coupling effect between ultra-small Mn 3 O 4 nanoparticles and porous carbon microrods for hybrid supercapacitors. <i>Energy Storage Materials</i> , 2017 , 6, 53-60	19.4	54
126	New twinning route in face-centered cubic nanocrystalline metals. <i>Nature Communications</i> , 2017 , 8, 214	2 17.4	75

125	Atomic-Sized Pores Enhanced Electrocatalysis of TaS Nanosheets for Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 8945-8949	24	121
124	Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. <i>NPG Asia Materials</i> , 2016 , 8, e266-e266	10.3	74
123	Chemical Vapor Deposition of Monolayer Mo(1-x)W(x)S2 Crystals with Tunable Band Gaps. <i>Scientific Reports</i> , 2016 , 6, 21536	4.9	80
122	Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. <i>Energy and Environmental Science</i> , 2016 , 9, 2789-2793	35.4	386
121	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. <i>Scientific Reports</i> , 2016 , 6, 33466	4.9	42
120	Unveiling Three-Dimensional Stacking Sequences of 1T Phase MoS Monolayers by Electron Diffraction. <i>ACS Nano</i> , 2016 , 10, 10308-10316	16.7	17
119	Visualizing Under-Coordinated Surface Atoms on 3D Nanoporous Gold Catalysts. <i>Advanced Materials</i> , 2016 , 28, 1753-9	24	65
118	Atomistic mechanism of nano-scale phase separation in fcc-based high entropy alloys. <i>Journal of Alloys and Compounds</i> , 2016 , 663, 340-344	5.7	15
117	Bicontinuous nanotubular graphenepolypyrrole hybrid for high performance flexible supercapacitors. <i>Nano Energy</i> , 2016 , 19, 391-400	17.1	114
116	Homogeneously dispersed multimetal oxygen-evolving catalysts. <i>Science</i> , 2016 , 352, 333-7	33.3	1459
115	Size Effects in the Mechanical Properties of Bulk Bicontinuous Ta/Cu Nanocomposites Made by Liquid Metal Dealloying. <i>Advanced Engineering Materials</i> , 2016 , 18, 46-50	3.5	53
114	A hexagonal close-packed high-entropy alloy: The effect of entropy. <i>Materials and Design</i> , 2016 , 96, 10-	18.1	229
114	A hexagonal close-packed high-entropy alloy: The effect of entropy. <i>Materials and Design</i> , 2016 , 96, 10-Non-aqueous nanoporous gold based supercapacitors with high specific energy. <i>Scripta Materialia</i> , 2016 , 116, 76-81	18. 1	229
	Non-aqueous nanoporous gold based supercapacitors with high specific energy. <i>Scripta Materialia</i> ,		
113	Non-aqueous nanoporous gold based supercapacitors with high specific energy. <i>Scripta Materialia</i> , 2016 , 116, 76-81 A precipitation-hardened high-entropy alloy with outstanding tensile properties. <i>Acta Materialia</i> ,	5.6	17
113	Non-aqueous nanoporous gold based supercapacitors with high specific energy. <i>Scripta Materialia</i> , 2016 , 116, 76-81 A precipitation-hardened high-entropy alloy with outstanding tensile properties. <i>Acta Materialia</i> , 2016 , 102, 187-196 Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. <i>Acta</i>	5.6 8.4 8.4	17
113 112 111	Non-aqueous nanoporous gold based supercapacitors with high specific energy. <i>Scripta Materialia</i> , 2016 , 116, 76-81 A precipitation-hardened high-entropy alloy with outstanding tensile properties. <i>Acta Materialia</i> , 2016 , 102, 187-196 Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. <i>Acta Materialia</i> , 2016 , 116, 332-342 Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for	5.6 8.4 8.4	17 1020 432

(2015-2016)

10	3D Nanoporous Metal Phosphides toward High-Efficiency Electrochemical Hydrogen Production. Advanced Materials, 2016 , 28, 2951-5	24	137	
10	Photochemical route for synthesizing atomically dispersed palladium catalysts. <i>Science</i> , 2016 , 352, 79	7-89313	1141	
10	Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. <i>Energy and Environmental Science</i> , 2016 , 9, 2257-2261	35.4	409	
10	Earth-Abundant and Durable Nanoporous Catalyst for Exhaust-Gas Conversion. <i>Advanced Functional Materials</i> , 2016 , 26, 1609-1616	15.6	15	
10	Electric Properties of Dirac Fermions Captured into 3D Nanoporous Graphene Networks. <i>Advanced Materials</i> , 2016 , 28, 10304-10310	24	30	
10	Correlation between Chemical Dopants and Topological Defects in Catalytically Active Nanoporous Graphene. <i>Advanced Materials</i> , 2016 , 28, 10644-10651	24	88	
10	An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene. <i>Nanoscale</i> , 2016 , 8, 18551-18557	7.7	11	
10	Interfacial insights into 3D plasmonic multijunction nanoarchitecture toward efficient photocatalytic performance. <i>Nano Energy</i> , 2016 , 27, 515-525	17.1	32	
99	Nanoporous metal/oxide hybrid materials for rechargeable lithiumBxygen batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3620-3626	13	41	
98	An assessment on the future development of high-entropy alloys: Summary from a recent workshop. <i>Intermetallics</i> , 2015 , 66, 67-76	3.5	267	
97	A Layered P2- and O3-Type Composite as a High-Energy Cathode for Rechargeable Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2015 , 127, 5992-5997	3.6	44	
96	A High-Voltage and Ultralong-Life Sodium Full Cell for Stationary Energy Storage. <i>Angewandte Chemie</i> , 2015 , 127, 11867-11871	3.6	12	
95	A nanoporous metal recuperated MnO2 anode for lithium ion batteries. <i>Nanoscale</i> , 2015 , 7, 15111-6	7.7	52	
94	High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2131-6	16.4	641	
93	High Catalytic Activity of Nitrogen and Sulfur Co-Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2015 , 127, 2159-2164	3.6	118	
92	Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. <i>Acta Materialia</i> , 2015 , 84, 145-152	8.4	142	
91	On-Chip Micro-Pseudocapacitors for Ultrahigh Energy and Power Delivery. <i>Advanced Science</i> , 2015 , 2, 1500067	13.6	57	
90	Nanoporous Metal Papers for Scalable Hierarchical Electrode. <i>Advanced Science</i> , 2015 , 2, 1500086	13.6	21	

89	3D Nanoporous Nitrogen-Doped Graphene with Encapsulated RuO2 Nanoparticles for Li-O2 Batteries. <i>Advanced Materials</i> , 2015 , 27, 6137-43	24	174
88	Nanoporous Graphene with Single-Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14031-5	16.4	480
87	Metallic Glass as a Mechanical Material for Microscanners. Advanced Functional Materials, 2015, 25, 567	77 <u>15</u> 682	2 21
86	Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization. <i>Advanced Materials</i> , 2015 , 27, 4302-7	24	597
85	A High-Voltage and Ultralong-Life Sodium Full Cell for Stationary Energy Storage. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11701-5	16.4	112
84	Nanoporous Graphene with Single-Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. <i>Angewandte Chemie</i> , 2015 , 127, 14237-14241	3.6	69
83	A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5894-9	16.4	245
82	Extraordinary Supercapacitor Performance of a Multicomponent and Mixed-Valence Oxyhydroxide. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8100-4	16.4	39
81	Hierarchical nanoporous metal/metal-oxide composite by dealloying metallic glass for high-performance energy storage. <i>Corrosion Science</i> , 2015 , 96, 196-202	6.8	41
80	Visualization of topological landscape in shear-flow dynamics of amorphous solids. <i>Europhysics Letters</i> , 2015 , 110, 38002	1.6	1
79	B22-O-12 In Situ Atomic Scale Observation of Grain Rotation Mediated by Grain Boundary Dislocations. <i>Microscopy (Oxford, England)</i> , 2015 , 64, i52.2-i52	1.3	
78	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. <i>Energy and Environmental Science</i> , 2015 , 8, 1237-1244	35.4	193
77	Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 442-6	16.4	453
76	Bicontinuous nanoporous N-doped graphene for the oxygen reduction reaction. <i>Advanced Materials</i> , 2014 , 26, 4145-50	24	229
75	High-Quality Three-Dimensional Nanoporous Graphene. Angewandte Chemie, 2014, 126, 4922-4926	3.6	43
74	Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3523-8	3.6	41
73	Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. <i>Advanced Materials</i> , 2014 , 26, 8023-8	24	262
7 ²	Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13805	13	110

(2014-2014)

71	A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. <i>ChemSusChem</i> , 2014 , 7, 2115-9	8.3	83
70	Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. <i>Chemical Communications</i> , 2014 , 50, 1215-7	5.8	266
69	Chemically exfoliated ReS2 nanosheets. <i>Nanoscale</i> , 2014 , 6, 12458-62	7.7	136
68	Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. <i>Nature Communications</i> , 2014 , 5, 4402	17.4	222
67	The ultrastable kinetic behavior of an Au-based nanoglass. Acta Materialia, 2014, 79, 30-36	8.4	81
66	Self-grown oxy-hydroxide@ nanoporous metal electrode for high-performance supercapacitors. <i>Advanced Materials</i> , 2014 , 26, 269-72	24	143
65	Hierarchical nanoporous nickel alloy as three-dimensional electrodes for high-efficiency energy storage. <i>Scripta Materialia</i> , 2014 , 89, 69-72	5.6	52
64	Asymmetric twins in rhombohedral boron carbide. <i>Applied Physics Letters</i> , 2014 , 104, 021907	3.4	21
63	Nanoporous metal based flexible asymmetric pseudocapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10910-10916	13	77
62	Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold. <i>Nano Letters</i> , 2014 , 14, 1172-7	11.5	100
61	Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. <i>Journal of Power Sources</i> , 2014 , 247, 896-905	8.9	123
60	Surface coating of lithiumEhanganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4422	13	95
59	Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells. <i>Chemical Science</i> , 2014 , 5, 403-409	9.4	81
58	CoreBhell-Structured CNT@RuO2 Composite as a High-Performance Cathode Catalyst for Rechargeable Li D 2 Batteries. <i>Angewandte Chemie</i> , 2014 , 126, 452-456	3.6	49
57	Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. <i>Nano Research</i> , 2014 , 7, 1569-1580	10	47
56	Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production. <i>Advanced Materials</i> , 2014 , 26, 3100-4	24	188
55	Shear amorphization of boron suboxide. <i>Scripta Materialia</i> , 2014 , 76, 9-12	5.6	36
54	High-quality three-dimensional nanoporous graphene. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4822-6	16.4	184

53	Crystalline liquid and rubber-like behavior in Cu nanowires. Nano Letters, 2013, 13, 3812-6	11.5	39
52	High-energy-density nonaqueous MnO2@nanoporous gold based supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9202	13	78
51	Conducting MoS[hanosheets as catalysts for hydrogen evolution reaction. <i>Nano Letters</i> , 2013 , 13, 6222-	7 11.5	1613
50	A Core-Shell Nanoporous Pt-Cu Catalyst with Tunable Composition and High Catalytic Activity. <i>Advanced Functional Materials</i> , 2013 , 23, 4156-4162	15.6	103
49	In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. <i>Nature Communications</i> , 2013 , 4, 2413	17.4	135
48	Atomic structure of amorphous shear bands in boron carbide. <i>Nature Communications</i> , 2013 , 4, 2483	17.4	145
47	Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors. <i>Journal of Power Sources</i> , 2013 , 225, 304-310	8.9	43
46	The effect of size on the elastic strain limit in Ni60Nb40 glassy films. Acta Materialia, 2013, 61, 4689-469	98.4	18
45	Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys. <i>Acta Materialia</i> , 2013 , 61, 7726-7740	8.4	65
44	Microstructure characterization of Cu-rich nanoprecipitates in a FeI.5 CuI.5 MnI.0 NiI.0 Al multicomponent ferritic alloy. <i>Acta Materialia</i> , 2013 , 61, 2133-2147	8.4	117
43	Enhanced supercapacitor performance of MnO2 by atomic doping. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1664-7	16.4	204
42	Electroplated Thick Manganese Oxide Films with Ultrahigh Capacitance. <i>Advanced Energy Materials</i> , 2013 , 3, 857-863	21.8	68
41	Regulating infrared photoresponses in reduced graphene oxide phototransistors by defect and atomic structure control. <i>ACS Nano</i> , 2013 , 7, 6310-20	16.7	89
40	Enhanced catalytic activity in strained chemically exfoliated WSIhanosheets for hydrogen evolution. <i>Nature Materials</i> , 2013 , 12, 850-5	27	2039
39	Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. <i>Journal of Power Sources</i> , 2012 , 197, 325-329	8.9	93
38	Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. <i>Intermetallics</i> , 2012 , 29, 35-40	3.5	61
37	Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires. <i>Nano Letters</i> , 2012 , 12, 4045-9	11.5	96
36	Atomic origins of the high catalytic activity of nanoporous gold. <i>Nature Materials</i> , 2012 , 11, 775-80	27	687

(2011-2012)

35	High resolution transmission electron microscopy studies of [phase in Ni-based single crystal superalloys. <i>Journal of Alloys and Compounds</i> , 2012 , 536, 80-84	5.7	18
34	Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases. <i>Nature Communications</i> , 2012 , 3, 1052	17.4	89
33	Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano, 2012, 6, 7311-7	16.7	696
32	Nanoporous Gold-Catalyzed [4+2] Benzannulation between ortho-Alkynylbenzaldehydes and Alkynes. <i>Synlett</i> , 2012 , 2012, 66-69	2.2	39
31	Screw-rotation twinning through helical movement of triple-partials. <i>Applied Physics Letters</i> , 2012 , 101, 121901	3.4	12
30	Super elastic strain limit in metallic glass films. <i>Scientific Reports</i> , 2012 , 2, 852	4.9	59
29	Effect of Residual Silver on Surface-Enhanced Raman Scattering of Dealloyed Nanoporous Gold. Journal of Physical Chemistry C, 2011 , 115, 19583-19587	3.8	58
28	Localized surface plasmon resonance of nanoporous gold. <i>Applied Physics Letters</i> , 2011 , 98, 093701	3.4	117
27	Direct observation of local atomic order in a metallic glass. <i>Nature Materials</i> , 2011 , 10, 28-33	27	391
26	Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. <i>Nature Nanotechnology</i> , 2011 , 6, 232-6	28.7	1705
25	Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films. <i>Scripta Materialia</i> , 2011 , 64, 343-346	5.6	117
24	Three-dimensional nanoporous gold for electrochemical supercapacitors. <i>Scripta Materialia</i> , 2011 , 64, 923-926	5.6	97
23	Photoluminescence from chemically exfoliated MoS2. <i>Nano Letters</i> , 2011 , 11, 5111-6	11.5	2897
22	Asymmetrical quantum dot growth on tensile and compressive-strained ZnO nanowire surfaces. <i>Acta Materialia</i> , 2011 , 59, 651-657	8.4	12
21	Nanoporous PdNi Bimetallic Catalyst with Enhanced Electrocatalytic Performances for Electro-oxidation and Oxygen Reduction Reactions. <i>Advanced Functional Materials</i> , 2011 , 21, 4364-4370	15.6	227
20	Li storage in 3D nanoporous Au-supported nanocrystalline tin. Advanced Materials, 2011 , 23, 2443-7	24	183
19	Approaching the theoretical elastic strain limit in copper nanowires. Nano Letters, 2011, 11, 3151-5	11.5	176
18	Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement. <i>ACS Nano</i> , 2011 , 5, 4407-13	16.7	209

17	Nanoindentation characterization of deformation and failure of aluminum oxynitride. <i>Acta Materialia</i> , 2011 , 59, 1671-1679	8.4	34
16	Atomic-Scale-Deformation-Dynamics (ASDS) of Nanowires and Nanofilms. <i>Materials Science Forum</i> , 2010 , 654-656, 1190-1194	0.4	2
15	Dynamic Atomic Mechanisms of Plasticity of Ni Nanowires and Nano Crystalline Ultra-Thin Films. <i>Materials Science Forum</i> , 2010 , 654-656, 2293-2296	0.4	4
14	In situ observation of dislocation behavior in nanometer grains. <i>Physical Review Letters</i> , 2010 , 105, 135	5 9 14	120
13	Pressure-induced depolarization and resonance in Raman scattering of single-crystalline boron carbide. <i>Physical Review B</i> , 2010 , 81,	3.3	31
12	Nanostructured materials as catalysts: nanoporous-gold-catalyzed oxidation of organosilanes with water. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 10093-5	16.4	190
11	Nanoporous Metals for Catalytic and Optical Applications. MRS Bulletin, 2009, 34, 569-576	3.2	348
10	Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility. <i>Annual Review of Materials Research</i> , 2008 , 38, 445-469	12.8	468
9	Nanoporous Metals by Dealloying Multicomponent Metallic Glasses. <i>Chemistry of Materials</i> , 2008 , 20, 4548-4550	9.6	248
8	Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. <i>Scripta Materialia</i> , 2006 , 54, 1685-1690	5.6	113
7	Mechanical scratching induced phase transitions and reactions of boron carbide. <i>Journal of Applied Physics</i> , 2006 , 100, 123517	2.5	28
6	Comment on "Grain boundary-mediated plasticity in nanocrystalline nickel". <i>Science</i> , 2005 , 308, 356; author reply 356	33.3	24
5	Facile preparation and characterization of hyperbranched poly(amine ester) grafted silica nanoparticles. <i>Journal of Materials Science</i> , 2004 , 39, 3825-3827	4.3	15
4	Metallic mesoporous nanocomposites for electrocatalysis. <i>Journal of the American Chemical Society</i> , 2004 , 126, 6876-7	16.4	370
3	Deformation twinning in nanocrystalline aluminum. Science, 2003, 300, 1275-7	33.3	910
2	Shock-induced localized amorphization in boron carbide. <i>Science</i> , 2003 , 299, 1563-6	33.3	401
1	CoreBhell Structured FeNC Catalysts with Enriched Iron Sites in Surface Layers for Proton-Exchange Membrane Fuel Cells. ACS Catalysis, 6409-6417	13.1	5