Ian W Craig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4341206/publications.pdf

Version: 2024-02-01

318942 445137 6,467 36 23 33 citations h-index g-index papers 38 38 38 6614 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: Meta-analysis of data from genome-wide association studies. European Neuropsychopharmacology, 2018, 28, 945-954.	0.3	64
2	Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Biological Psychiatry, 2017, 81, 325-335.	0.7	175
3	Pharmacogenetics of antidepressant response: A polygenic approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 75, 128-134.	2.5	71
4	Interaction between the $\langle i \rangle$ FTO $\langle i \rangle$ gene, body mass index and depression: meta-analysis of 13701 individuals. British Journal of Psychiatry, 2017, 211, 70-76.	1.7	49
5	Transcriptomics and the mechanisms of antidepressant efficacy. European Neuropsychopharmacology, 2016, 26, 105-112.	0.3	19
6	Phenotypic Association Analyses With Copy Number Variation in Recurrent Depressive Disorder. Biological Psychiatry, 2016, 79, 329-336.	0.7	21
7	A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. BMC Medicine, 2015, 13, 86.	2.3	56
8	A Pooled Genome-Wide Association Study of Asperger Syndrome. PLoS ONE, 2015, 10, e0131202.	1.1	10
9	Molecular genetics research in sub-Saharan Africa: how can the international community help?. The HUGO Journal, 2014, 8, 2.	4.1	1
10	Epigenomic and transcriptomic signatures of a Klinefelter syndrome (47,XXY) karyotype in the brain. Epigenetics, 2014, 9, 587-599.	1.3	53
11	The correlation between reading and mathematics ability at age twelve has a substantial genetic component. Nature Communications, 2014, 5, 4204.	5.8	72
12	Investigating the genetic variation underlying episodicity in major depressive disorder: Suggestive evidence for a bipolar contribution. Journal of Affective Disorders, 2014, 155, 81-89.	2.0	15
13	A Genome Wide Association Study of Mathematical Ability Reveals an Association at Chromosome 3q29, a Locus Associated with Autism and Learning Difficulties: A Preliminary Study. PLoS ONE, 2014, 9, e96374.	1.1	27
14	Stressful life events and the serotonin transporter gene (5-HTT) in recurrent clinical depression. Journal of Affective Disorders, 2012, 136, 189-193.	2.0	22
15	Response to comment by Stuart Macgregor. Behavior Genetics, 2010, 40, 48-48.	1.4	O
16	Commentary on "A Role for the <i>X</i> Chromosome in Sex Differences in Variability in General Intelligence?〕(Johnson et al., 2009). Perspectives on Psychological Science, 2009, 4, 615-621.	5 . 2	11
17	Genetics of human aggressive behaviour. Human Genetics, 2009, 126, 101-113.	1.8	177
18	Neural mechanisms of anger regulation as a function of genetic risk for violence Emotion, 2009, 9, 385-396.	1.5	63

#	Article	IF	Citations
19	Association of the serotonin transporter gene, neuroticism and smoking behaviours. Journal of Human Genetics, 2008, 53, 239-246.	1.1	18
20	The MAO-A genotype does not modulate resting brain metabolism in adults. Psychiatry Research - Neuroimaging, 2008, 164, 73-76.	0.9	14
21	Brain Monoamine Oxidase A Activity Predicts Trait Aggression. Journal of Neuroscience, 2008, 28, 5099-5104.	1.7	215
22	The role of monoamine oxidase A, MAOA, in the aetiology of antisocial behaviour: the importance of gene-environment interactions. Novartis Foundation Symposium, 2008, 268, 227-241.	1.2	13
23	Evidence That Brain MAO A Activity Does Not Correspond to MAO A Genotype in Healthy Male Subjects. Biological Psychiatry, 2007, 62, 355-358.	0.7	109
24	The importance of stress and genetic variation in human aggression. BioEssays, 2007, 29, 227-236.	1.2	89
25	Single-Nucleotide Polymorphism Genotyping in DNA Pools. , 2005, 311, 147-164.		6
26	Application of microarrays to the analysis of the inactivation status of human X-linked genes expressed in lymphocytes. European Journal of Human Genetics, 2004, 12, 639-646.	1.4	35
27	The Genetic Basis for Sex Differences in Human Behaviour: Role of the Sex Chromosomes. Annals of Human Genetics, 2004, 68, 269-284.	0.3	50
28	Role of Genotype in the Cycle of Violence in Maltreated Children. Science, 2002, 297, 851-854.	6.0	4,118
29	Genetics, environment and cognitive abilities: review and work in progress towards a genome scan for quantitative trait locus associations using DNA pooling. British Journal of Psychiatry, 2001, 178, s41-s48.	1.7	41
30	A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA pooling and extreme selected groups. Behavior Genetics, 2001, 31, 497-509.	1.4	80
31	Infant zygosity can be assigned by parental report questionnaire data. Twin Research and Human Genetics, 2000, 3, 129-133.	1.5	205
32	A novel expression based approach for assessing the inactivation status of human X-linked genes. European Journal of Human Genetics, 2000, 8, 103-108.	1.4	34
33	Infant zygosity can be assigned by parental report questionnaire data. Twin Research and Human Genetics, 2000, 3, 129-133.	1.5	277
34	DNA by mail: an inexpensive and noninvasive method for collecting DNA samples from widely dispersed populations. Behavior Genetics, 1997, 27, 251-257.	1.4	223
35	Human behavioural genetics of cognitive abilities and disabilities. BioEssays, 1997, 19, 1117-1124.	1.2	30
36	X Inactivation as a Source of Behavioural Differences in Monozygotic Female Twins. , 0, .		2