
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4341129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology, 2012, 33, 128-132.	1.3	491
2	Toxicity of mercury: Molecular evidence. Chemosphere, 2020, 245, 125586.	4.2	199
3	Two independent transcription initiation codes overlap on vertebrate core promoters. Nature, 2014, 507, 381-385.	13.7	182
4	<i>gfap</i> and <i>nestin</i> reporter lines reveal characteristics of neural progenitors in the adult zebrafish brain. Developmental Dynamics, 2009, 238, 475-486.	0.8	175
5	A simple and efficient procedure for non-isotopic in situ hybridization to sectioned material. Trends in Genetics, 1994, 10, 75-76.	2.9	135
6	Exome sequencing of Bardet–Biedl syndrome patient identifies a null mutation in the BBSome subunit <i>BBIP1</i> (<i>BBS18</i>). Journal of Medical Genetics, 2014, 51, 132-136.	1.5	124
7	Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Research, 2013, 23, 1938-1950.	2.4	119
8	Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish. ACS Synthetic Biology, 2015, 4, 951-958.	1.9	105
9	Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. Journal of Neurobiology, 2006, 66, 463-475.	3.7	93
10	Fast Segmentation of Stained Nuclei in Terabyte-Scale, Time Resolved 3D Microscopy Image Stacks. PLoS ONE, 2014, 9, e90036.	1.1	75
11	Regulatory interactions specifying Kolmer-Agduhr interneurons. Development (Cambridge), 2010, 137, 2713-2722.	1.2	66
12	Differential Nanoparticle Sequestration by Macrophages and Scavenger Endothelial Cells Visualized <i>in Vivo</i> in Real-Time and at Ultrastructural Resolution. ACS Nano, 2020, 14, 1665-1681.	7.3	62
13	Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair. Nature Communications, 2016, 7, 12875.	5.8	61
14	The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish. EMBO Journal, 2007, 26, 3945-3956.	3.5	57
15	Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos. Developmental Biology, 2013, 380, 351-362.	0.9	54
16	Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization. Nature Communications, 2017, 8, 13991.	5.8	53
17	An ensemble-averaged, cell density-based digital model of zebrafish embryo development derived from light-sheet microscopy data with single-cell resolution. Scientific Reports, 2015, 5, 8601.	1.6	44
18	Stab Wound Injury of the Zebrafish Adult Telencephalon: A Method to Investigate Vertebrate Brain Neurogenesis and Regeneration. Journal of Visualized Experiments, 2014, , e51753.	0.2	35

#	Article	IF	CITATIONS
19	EmbryoMiner: A new framework for interactive knowledge discovery in large-scale cell tracking data of developing embryos. PLoS Computational Biology, 2018, 14, e1006128.	1.5	33
20	Molecular Description of Eye Defects in the Zebrafish Pax6b Mutant, sunrise, Reveals a Pax6b-Dependent Genetic Network in the Developing Anterior Chamber. PLoS ONE, 2015, 10, e0117645.	1.1	32
21	Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer. ELife, 2017, 6, .	2.8	32
22	Long-range evolutionary constraints reveal cis-regulatory interactions on the human X chromosome. Nature Communications, 2015, 6, 6904.	5.8	31
23	Female versus male biological identities of nanoparticles determine the interaction with immune cells in fish. Environmental Science: Nano, 2017, 4, 895-906.	2.2	31
24	Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis. Gene Expression Patterns, 2015, 19, 1-13.	0.3	30
25	Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci. Scientific Reports, 2019, 9, 17938.	1.6	30
26	The zebrafish embryo as a model for assessing off-target drug effects. DMM Disease Models and Mechanisms, 2010, 3, 689-692.	1.2	29
27	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. PLoS Genetics, 2020, 16, e1008774.	1.5	29
28	Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biology, 2015, 16, 267.	3.8	27
29	DanTox—a novel joint research project using zebrafish (Danio rerio) to identify specific toxicity and molecular modes of action of sediment-bound pollutants. Journal of Soils and Sediments, 2010, 10, 714-717.	1.5	26
30	Archiving of zebrafish lines can reduce animal experiments in biomedical research. EMBO Reports, 2017, 18, 1-2.	2.0	26
31	An automated screening method for detecting compounds with goitrogenic activity using transgenic zebrafish embryos. PLoS ONE, 2018, 13, e0203087.	1.1	26
32	Maintenance of Zebrafish Lines at the European Zebrafish Resource Center. Zebrafish, 2016, 13, S-19-S-23.	0.5	25
33	Intrinsically Fluorescent, Stealth Polypyrazoline Nanoparticles with Large Stokes Shift for In Vivo Imaging. Small, 2018, 14, e1801571.	5.2	25
34	Tracking of Indels by DEcomposition is a Simple and Effective Method to Assess Efficiency of Guide RNAs in Zebrafish. Zebrafish, 2017, 14, 586-588.	0.5	21
35	Expression of adiponectin receptors in the brain of adult zebrafish and mouse: Links with neurogenic niches and brain repair. Journal of Comparative Neurology, 2019, 527, 2317-2333.	0.9	21
36	Zebrafish biosensor for toxicant induced muscle hyperactivity. Scientific Reports, 2016, 6, 23768.	1.6	20

#	Article	IF	CITATIONS
37	The HMG box transcription factors Sox1a and b specify a new class of glycinergic interneurons in the spinal cord of zebrafish embryos. Development (Cambridge), 2019, 146, .	1.2	20
38	Loss of the Bardet-Biedl protein Bbs1 alters photoreceptor outer segment protein and lipid composition. Nature Communications, 2022, 13, 1282.	5.8	20
39	Conserved non-coding sequences and transcriptional regulation. Brain Research Bulletin, 2008, 75, 225-230.	1.4	19
40	The in vitro PIG-A gene mutation assay: glycosylphosphatidylinositol (GPI)-related genotype-to-phenotype relationship in TK6 cells. Archives of Toxicology, 2016, 90, 1729-1736.	1.9	17
41	Conservation of shh cis-regulatory architecture of the coelacanth is consistent with its ancestral phylogenetic position. EvoDevo, 2010, 1, 11.	1.3	15
42	Mandipropamid as a chemical inducer of proximity for in vivo applications. Nature Chemical Biology, 2022, 18, 64-69.	3.9	15
43	Lmx1b is required for the glutamatergic fates of a subset of spinal cord neurons. Neural Development, 2016, 11, 16.	1.1	14
44	The Tetraodon nigroviridis reference transcriptome: developmental transition, length retention and microsynteny of long non-coding RNAs in a compact vertebrate genome. Scientific Reports, 2016, 6, 33210.	1.6	14
45	Impacts of Different Exposure Scenarios on Transcript Abundances in Danio rerio Embryos when Investigating the Toxicological Burden of Riverine Sediments. PLoS ONE, 2014, 9, e106523.	1.1	13
46	Generating semi-synthetic validation benchmarks for embryomics. , 2016, , .		12
47	Oriented immobilization of a delicate glucose-sensing protein on silica nanoparticles. Biomaterials, 2019, 190-191, 76-85.	5.7	12
48	The Genetic Programs Specifying Kolmer–Agduhr Interneurons. Frontiers in Neuroscience, 2020, 14, 577879.	1.4	11
49	Surface functionalisation-dependent adverse effects of metal nanoparticles and nanoplastics in zebrafish embryos. Environmental Science: Nano, 2022, 9, 375-392.	2.2	10
50	Melanosomes in pigmented epithelia maintain eye lens transparency during zebrafish embryonic development. Scientific Reports, 2016, 6, 25046.	1.6	9
51	Mutation of a serine near the catalytic site of the choline acetyltransferase a gene almost completely abolishes motility of the zebrafish embryo. PLoS ONE, 2018, 13, e0207747.	1.1	9
52	Distinct amino acid motifs carrying multiple positive charges regulate membrane targeting of dysferlin and MG53. PLoS ONE, 2018, 13, e0202052.	1.1	9
53	Zebrafish: A Pharmacogenetic Model for Anesthesia. Methods in Enzymology, 2018, 602, 189-209.	0.4	8
54	EuFishBioMed (COST Action BM0804): A European Network to Promote the Use of Small Fishes in Biomedical Research. Zebrafish, 2012, 9, 90-93.	0.5	7

#	Article	IF	CITATIONS
55	Whole transcriptome data analysis of zebrafish mutants affecting muscle development. Data in Brief, 2016, 8, 61-68.	0.5	7
56	Loss of zebrafish Smyd1a interferes with myofibrillar integrity without triggering the misfolded myosin response. Biochemical and Biophysical Research Communications, 2018, 496, 339-345.	1.0	7
57	A Universal Program for Tissue Regeneration?. Developmental Cell, 2012, 23, 1123-1124.	3.1	6
58	Microtome-integrated microscope system for high sensitivity tracking of in-resin fluorescence in blocks and ultrathin sections for correlative microscopy. Scientific Reports, 2017, 7, 13583.	1.6	6
59	Fishing for contaminants: identification of three mechanism specific transcriptome signatures using Danio rerio embryos. Environmental Science and Pollution Research, 2018, 25, 4023-4036.	2.7	6
60	Automated Classification of Fertilized Zebrafish Embryos. Zebrafish, 2019, 16, 326-328.	0.5	6
61	Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish. Histochemistry and Cell Biology, 2020, 154, 463-480.	0.8	6
62	In Vivo Behavior of the Antibacterial Peptide Cyclo[RRRWFW], Explored Using a 3-Hydroxychromone-Derived Fluorescent Amino Acid. Frontiers in Chemistry, 2021, 9, 688446.	1.8	6
63	Functions of thioredoxin1 in brain development and in response to environmental chemicals in zebrafish embryos. Toxicology Letters, 2019, 314, 43-52.	0.4	5
64	Novel <i>IQCE</i> variations confirm its role in postaxial polydactyly and cause ciliary defect phenotype in zebrafish. Human Mutation, 2020, 41, 240-254.	1.1	5
65	Fold-change threshold screening: a robust algorithm to unmask hidden gene expression patterns in noisy aggregated transcriptome data. Environmental Science and Pollution Research, 2015, 22, 16384-16392.	2.7	4
66	A compact unc45b â€promoter drives muscleâ€specific expression in zebrafish and mouse. Genesis, 2016, 54, 431-438.	0.8	4
67	Methylmercury-induced hair cell loss requires hydrogen peroxide production and leukocytes in zebrafish embryos. Toxicology Letters, 2022, 356, 151-160.	0.4	3
68	Automation strategies for large-scale 3D image analysis. Automatisierungstechnik, 2016, 64, 555-566.	0.4	1
69	HeRBi: Helmholtz Repository of Bioparts. Zebrafish, 2016, 13, 234-235.	0.5	1
70	Gene duplication and functional divergence of the zebrafish otospiralin genes. Development Genes and Evolution, 2020, 230, 27-36.	0.4	0
71	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0
72	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0

#	Article	IF	CITATIONS
73	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0
74	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0
75	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		Ο
76	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0