
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4339843/publications.pdf Version: 2024-02-01

FDED F DOLLITZ

#	Article	lF	CITATIONS
1	Kinematic Slip Model of the 2021 MÂ6.0 Antelope Valley, California, Earthquake. The Seismic Record, 2022, 2, 20-28.	3.1	5
2	Postseismic Relaxation Following the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 2022, 112, 734-749.	2.3	3
3	Coseismic Fault Slip and Afterslip Associated with the 18 March 2020 MÂ5.7 Magna, Utah, Earthquake. Seismological Research Letters, 2021, 92, 741-754.	1.9	4
4	Exploring GPS Observations of Postseismic Deformation Following the 2012 M W 7.8 Haida Gwaii and 2013 M W 7.5 Craig, Alaska Earthquakes: Implications for Viscoelastic Earth Structure. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021891.	3.4	1
5	Coseismic and post-seismic gravity disturbance induced by seismic sources using a 2.5-D spectral element method. Geophysical Journal International, 2020, 222, 827-844.	2.4	2
6	Rapid Geodetic Observations of Spatiotemporally Varying Postseismic Deformation Following the Ridgecrest Earthquake Sequence: The U.S. Geological Survey Response. Seismological Research Letters, 2020, 91, 2108-2123.	1.9	12
7	Kinematics of Fault Slip Associated with the 4–6 July 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 2020, 110, 1688-1700.	2.3	23
8	Coseismic Slip and Early Afterslip of the M6.0 24 August 2014 South Napa, California, Earthquake. Journal of Geophysical Research: Solid Earth, 2019, 124, 11728-11747.	3.4	7
9	Lithosphere and shallow asthenosphere rheology from observations of post-earthquake relaxation. Physics of the Earth and Planetary Interiors, 2019, 293, 106271.	1.9	21
10	Surface Imaging Functions for Elastic Reverse Time Migration. Journal of Geophysical Research: Solid Earth, 2019, 124, 2873-2895.	3.4	2
11	Sea Level Rise in the Samoan Islands Escalated by Viscoelastic Relaxation After the 2009 Samoaâ€Tonga Earthquake. Journal of Geophysical Research: Solid Earth, 2019, 124, 4142-4156.	3.4	31
12	Induced Seismicity Reduces Seismic Hazard?. Geophysical Research Letters, 2019, 46, 4170-4173.	4.0	3
13	Shallow microearthquakes near Chongqing, China triggered by the Rayleigh waves of the 2015 M7.8 Gorkha, Nepal earthquake. Earth and Planetary Science Letters, 2017, 479, 231-240.	4.4	20
14	Viscoelastic lower crust and mantle relaxation following the 14–16 April 2016 Kumamoto, Japan, earthquake sequence. Geophysical Research Letters, 2017, 44, 8795-8803.	4.0	21
15	Connecting crustal seismicity and earthquakeâ€driven stress evolution in Southern California. Journal of Geophysical Research: Solid Earth, 2017, 122, 6473-6490.	3.4	7
16	Geodetic Slip Model of the 3 September 2016 <i>M</i> _w Â5.8 Pawnee, Oklahoma, Earthquake: Evidence for Faultâ€Zone Collapse. Seismological Research Letters, 2017, 88, 983-993.	1.9	15
17	Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands. Geophysical Research Letters, 2016, 43, 3169-3177.	4.0	31
18	Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging. Geophysical Research Letters, 2016, 43, 118-126.	4.0	40

#	Article	IF	CITATIONS
19	The Earthquakeâ€Source Inversion Validation (SIV) Project. Seismological Research Letters, 2016, 87, 690-708.	1.9	96
20	Persistent slip rate discrepancies in the eastern California (USA) shear zone. Geology, 2016, 44, 691-694.	4.4	29
21	Lithospheric rheology constrained from twenty-five years of postseismic deformation following the 1989 M 6.9 Loma Prieta earthquake. Earth and Planetary Science Letters, 2016, 435, 147-158.	4.4	8
22	Rare dynamic triggering of remote <i>M</i> ≥ 5.5 earthquakes from global catalog analysis. Journal o Geophysical Research: Solid Earth, 2015, 120, 1748-1761.	of 3.4	19
23	Postearthquake relaxation evidence for laterally variable viscoelastic structure and water content in the Southern California mantle. Journal of Geophysical Research: Solid Earth, 2015, 120, 2672-2696.	3.4	43
24	The Mw 6.0 24 August 2014 South Napa Earthquake. Seismological Research Letters, 2015, 86, 309-326.	1.9	70
25	Coseismic compression/dilatation and viscoelastic uplift/subsidence following the 2012 Indian Ocean earthquakes quantified from satellite gravity observations. Geophysical Research Letters, 2015, 42, 3764-3772.	4.0	33
26	The Profound Reach of the 11 April 2012 M 8.6 Indian Ocean Earthquake: Short-Term Global Triggering Followed by a Longer-Term Global Shadow. Bulletin of the Seismological Society of America, 2014, 104, 972-984.	2.3	18
27	Seismic structure of the Central US crust and shallow upper mantle: Uniqueness of the Reelfoot Rift. Earth and Planetary Science Letters, 2014, 402, 157-166.	4.4	51
28	Broadscale postseismic gravity change following the 2011 Tohokuâ€Oki earthquake and implication for deformation by viscoelastic relaxation and afterslip. Geophysical Research Letters, 2014, 41, 5797-5805.	4.0	43
29	Post-earthquake relaxation using a spectral element method: 2.5-D case. Geophysical Journal International, 2014, 198, 308-326.	2.4	28
30	Seismic imaging east of the Rocky Mountains with USArray. Earth and Planetary Science Letters, 2014, 402, 16-25.	4.4	93
31	How do "ghost transients―from past earthquakes affect GPS slip rate estimates on southern California faults?. Geochemistry, Geophysics, Geosystems, 2013, 14, 828-838.	2.5	55
32	Annual modulation of nonâ€volcanic tremor in northern Cascadia. Journal of Geophysical Research: Solid Earth, 2013, 118, 2445-2459.	3.4	25
33	Stress imparted by the great 2004 Sumatra earthquake shut down transforms and activated rifts up to 400Âkm away in the Andaman Sea. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15152-15156.	7.1	32
34	Generic Earthquake Simulator. Seismological Research Letters, 2012, 83, 959-963.	1.9	51
35	ViscoSim Earthquake Simulator. Seismological Research Letters, 2012, 83, 979-982.	1.9	22
36	A Comparison among Observations and Earthquake Simulator Results for the allcal2 California Fault Model. Seismological Research Letters, 2012, 83, 994-1006.	1.9	42

#	Article	IF	CITATIONS
37	The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature, 2012, 490, 250-253.	27.8	157
38	Illumination of rheological mantle heterogeneity by the M7.2 2010 El Mayor ucapah earthquake. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	30
39	Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake. Geophysical Research Letters, 2011, 38, .	4.0	59
40	Correction to "Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake― Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	49
41	Geodetic slip model of the 2011 M9.0 Tohoku earthquake. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	94
42	Lithosphere-asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities. Geophysical Journal International, 2011, 185, 1003-1021.	2.4	160
43	Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake. Geophysical Journal International, 2011, 187, 613-630.	2.4	96
44	High-frequency Born synthetic seismograms based on coupled normal modes. Geophysical Journal International, 2011, 187, 1420-1442.	2.4	1
45	Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography. Geophysical Journal International, 2010, 180, 1153-1169.	2.4	55
46	Viscoelastic-cycle model of interseismic deformation in the northwestern United States. Geophysical Journal International, 2010, , .	2.4	23
47	On the resolution of shallow mantle viscosity structure using postearthquake relaxation data: Application to the 1999 Hector Mine, California, earthquake. Journal of Geophysical Research, 2010, 115,	3.3	32
48	A Viscoelastic Earthquake Simulator with Application to the San Francisco Bay Region. Bulletin of the Seismological Society of America, 2009, 99, 1760-1785.	2.3	12
49	Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 <i>M</i> = 9.2 Sumatra earthquake. Geophysical Journal International, 2008, 173, 189-204.	2.4	109
50	Dislocation models of interseismic deformation in the western United States. Journal of Geophysical Research, 2008, 113, .	3.3	38
51	Probabilistic seismic hazard in the San Francisco Bay area based on a simplified viscoelastic cycle model of fault interactions. Journal of Geophysical Research, 2008, 113, .	3.3	16
52	Observations and interpretation of fundamental mode Rayleigh wavefields recorded by the Transportable Array (USArray). Journal of Geophysical Research, 2008, 113, .	3.3	23
53	Implications of postseismic gravity change following the great 2004 Sumatraâ€Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. Journal of Geophysical Research, 2008, 113, .	3.3	75
54	Temporal evolution of continental lithospheric strength in actively deforming regions. GSA Today, 2008, 18, 4.	2.0	79

#	Article	IF	CITATIONS
55	Implications of the 26 December 2004 Sumatra-Andaman Earthquake on Tsunami Forecast and Assessment Models for Great Subduction-Zone Earthquakes. Bulletin of the Seismological Society of America, 2007, 97, S249-S270.	2.3	63
56	Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity. Geophysical Journal International, 2007, 171, 177-190.	2.4	103
57	Stress changes along the Sunda trench following the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes. Geophysical Research Letters, 2006, 33, .	4.0	55
58	The 1923 Kanto earthquake reevaluated using a newly augmented geodetic data set. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	22
59	Inference of postseismic deformation mechanisms of the 1923 Kanto earthquake. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	15
60	Direct test of static stress versus dynamic stress triggering of aftershocks. Geophysical Research Letters, 2006, 33, .	4.0	34
61	Mechanical deformation model of the western United States instantaneous strain-rate field. Geophysical Journal International, 2006, 167, 421-444.	2.4	9
62	Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophysical Journal International, 2006, 167, 397-420.	2.4	179
63	GEOPHYSICS: A New Class of Earthquake Observations. Science, 2006, 313, 619-620.	12.6	10
64	The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets. Science, 2005, 308, 1769-1772.	12.6	198
65	Waveform tomography of crustal structure in the south San Francisco Bay region. Journal of Geophysical Research, 2005, 110, .	3.3	6
66	Coseismic slip distribution of the 1923 Kanto earthquake, Japan. Journal of Geophysical Research, 2005, 110, .	3.3	18
67	Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake. Journal of Geophysical Research, 2005, 110, .	3.3	79
68	Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone. Journal of Geophysical Research, 2005, 110, .	3.3	36
69	A physical model for strain accumulation in the San Francisco Bay Region. Geophysical Journal International, 2004, 160, 303-318.	2.4	17
70	A physical model for strain accumulation in the San Francisco Bay region: Stress evolution since 1838. Journal of Geophysical Research, 2004, 109, .	3.3	33
71	The relationship between the instantaneous velocity field and the rate of moment release in the lithosphere. Geophysical Journal International, 2003, 153, 595-608.	2.4	22
72	Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model. Geophysical Journal International, 2003, 155, 57-78.	2.4	46

#	Article	IF	CITATIONS
73	Motion of the Scotia Sea plates. Geophysical Journal International, 2003, 155, 789-804.	2.4	114
74	Constraints on the viscosity of the continental crust and mantle from GPS measurements and postseismic deformation models in western Mongolia. Journal of Geophysical Research, 2003, 108, .	3.3	75
75	Transient rheology of the uppermost mantle beneath the Mojave Desert, California. Earth and Planetary Science Letters, 2003, 215, 89-104.	4.4	192
76	Stress Triggering of the 1999 Hector Mine Earthquake by Transient Deformation Following the 1992 Landers Earthquake. Bulletin of the Seismological Society of America, 2002, 92, 1487-1496.	2.3	104
77	Regional Seismic Wavefield Computation on a 3-D Heterogeneous Earth Model by Means of Coupled Traveling Wave Synthesis. Pure and Applied Geophysics, 2002, 159, 2085-2112.	1.9	4
78	Viscoelastic shear zone model of a strike-slip earthquake cycle. Journal of Geophysical Research, 2001, 106, 26541-26560.	3.3	41
79	Sinking Mafic Body in a Reactivated Lower Crust: A Mechanism for Stress Concentration at the New Madrid Seismic Zone. Bulletin of the Seismological Society of America, 2001, 91, 1882-1897.	2.3	75
80	Remarks on the travelling wave decomposition. Geophysical Journal International, 2001, 144, 233-246.	2.4	8
81	Mantle Flow Beneath a Continental Strike-Slip Fault: Postseismic Deformation After the 1999 Hector Mine Earthquake. Science, 2001, 293, 1814-1818.	12.6	253
82	Mobility of continental mantle: Evidence from postseismic geodetic observations following the 1992 Landers earthquake. Journal of Geophysical Research, 2000, 105, 8035-8054.	3.3	211
83	Regional velocity structure in northern California from inversion of scattered seismic surface waves. Journal of Geophysical Research, 1999, 104, 15043-15072.	3.3	25
84	Scattering of spherical elastic waves from a small-volume spherical inclusion. Geophysical Journal International, 1998, 134, 390-408.	2.4	12
85	Viscosity of Oceanic Asthenosphere Inferred from Remote Triggering of Earthquakes. Science, 1998, 280, 1245-1249.	12.6	168
86	GPS measurements across the Northern Caribbean Plate Boundary Zone: Impact of postseismic relaxation following historic earthquakes. Geophysical Research Letters, 1998, 25, 2233-2236.	4.0	17
87	Joint estimation of afterslip rate and postseismic relaxation following the 1989 Loma Prieta earthquake. Journal of Geophysical Research, 1998, 103, 26975-26992.	3.3	118
88	Gravitational viscoelastic postseismic relaxation on a layered spherical Earth. Journal of Geophysical Research, 1997, 102, 17921-17941.	3.3	264
89	Gravity anomaly from faulting on a layered spherical earth with application to central Japan. Physics of the Earth and Planetary Interiors, 1997, 99, 259-271.	1.9	21
90	Shear partitioning near the central Japan triple junction: the 1923 great Kanto earthquake revisited-II. Geophysical Journal International, 1996, 126, 882-892.	2.4	12

FRED F POLLITZ

#	Article	IF	CITATIONS
91	Coseismic Deformation From Earthquake Faulting On A Layered Spherical Earth. Geophysical Journal International, 1996, 125, 1-14.	2.4	200
92	Fossil strain from the 1811-1812 New Madrid Earthquakes. Geophysical Research Letters, 1994, 21, 2303-2306.	4.0	26
93	Surface wave scattering from sharp lateral discontinuities. Journal of Geophysical Research, 1994, 99, 21891-21909.	3.3	17
94	Fault Model of the 1891 Nobi Earthquake from Historic Triangulation and Leveling Journal of Physics of the Earth, 1994, 42, 1-43.	1.4	23
95	Two-stage model of African absolute motion during the last 30 million years. Tectonophysics, 1991, 194, 91-106.	2.2	52
96	Episodic North America and Pacific Plate motions. Tectonics, 1988, 7, 711-726.	2.8	35
97	Observations of free oscillation amplitude anomalies. Geophysical Research Letters, 1987, 14, 895-898.	4.0	11
98	Pliocene change in Pacific-plate motion. Nature, 1986, 320, 738-741.	27.8	111
99	Toward a Time-Dependent Probabilistic Seismic Hazard Analysis for Alaska. Geophysical Monograph Series, 0, , 399-416.	0.1	3
100	Implications of the earthquake cycle for inferring fault locking on the Cascadia megathrust. Geophysical Journal International, 0, , ggx009.	2.4	14
101	Seismic and Geodetic Analysis of Rupture Characteristics of the 2020 MwÂ6.5 Monte Cristo Range, Nevada, Earthquake. Bulletin of the Seismological Society of America, 0, , .	2.3	7