
Anita F Quigley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4339815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bio-ink properties and printability for extrusion printing living cells. Biomaterials Science, 2013, 1, 763.	2.6	484
2	Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication, 2016, 8, 015019.	3.7	186
3	Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair. Scientific Reports, 2017, 7, 5837.	1.6	160
4	Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation of Human Neural Stem Cells: A Biocompatible Platform for Translational Neural Tissue Engineering. Tissue Engineering - Part C: Methods, 2015, 21, 385-393.	1.1	146
5	A Conductingâ€Polymer Platform with Biodegradable Fibers for Stimulation and Guidance of Axonal Growth. Advanced Materials, 2009, 21, 4393-4397.	11.1	136
6	Tailoring the mechanical properties of gelatin methacryloyl hydrogels through manipulation of the photocrosslinking conditions. Soft Matter, 2018, 14, 2142-2151.	1.2	123
7	Antifouling Strategies for Electrochemical Biosensing: Mechanisms and Performance toward Point of Care Based Diagnostic Applications. ACS Sensors, 2021, 6, 1482-1507.	4.0	113
8	Chondrogenesis of Infrapatellar Fat Pad Derived Adipose Stem Cells in 3D Printed Chitosan Scaffold. PLoS ONE, 2014, 9, e99410.	1.1	99
9	In Vivoandin VitroCorrection of themdxDystrophin Gene Nonsense Mutation by Short-Fragment Homologous Replacement. Human Gene Therapy, 2001, 12, 629-642.	1.4	90
10	Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy. Journal of Cardiac Failure, 2000, 6, 47-55.	0.7	77
11	Electrical Stimulation of Myoblast Proliferation and Differentiation on Aligned Nanostructured Conductive Polymer Platforms. Advanced Healthcare Materials, 2012, 1, 801-808.	3.9	61
12	Wetâ€ 5 pun Biodegradable Fibers on Conducting Platforms: Novel Architectures for Muscle Regeneration. Advanced Functional Materials, 2009, 19, 3381-3388.	7.8	53
13	Recent Advances in Nerve Tissue Engineering. International Journal of Artificial Organs, 2014, 37, 277-291.	0.7	45
14	Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacryloyl, hyaluronic acid methacryloyl. Biofabrication, 2019, 11, 035003.	3.7	44
15	Varied Prevalence of Age-Associated Mitochondrial DNA Deletions in Different Species and Tissues: A Comparison between Human and Rat. Biochemical and Biophysical Research Communications, 1997, 230, 630-635.	1.0	41
16	Pre-differentiation of human neural stem cells into GABAergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke. Stem Cell Research and Therapy, 2015, 6, 186.	2.4	41
17	Preparation, characterisation, and <i>in vitro</i> evaluation of electrically conducting poly(É›â€caprolactone)â€based nanocomposite scaffolds using <scp>PC</scp> 12 cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 853-865.	2.1	36
18	Mitochondrial DNA in Stroke and Migraine with Aura. Cerebrovascular Diseases, 1998, 8, 102-106.	0.8	34

ANITA F QUIGLEY

#	Article	IF	CITATIONS
19	Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomaterials Science and Engineering, 2022, 8, 2764-2797.	2.6	34
20	Differentiation of Stem Cells from Human Infrapatellar Fat Pad: Characterization of Cells Undergoing Chondrogenesis. Tissue Engineering - Part A, 2014, 20, 2213-2223.	1.6	29
21	Threeâ€dimensional neural cultures produce networks that mimic native brain activity. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 490-493.	1.3	29
22	Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel. ACS Biomaterials Science and Engineering, 2021, 7, 2279-2295.	2.6	29
23	Lubricin on Platinum Electrodes: A Lowâ€Impedance Proteinâ€Resistant Surface Towards Biomedical Implantation. ChemElectroChem, 2019, 6, 1939-1943.	1.7	22
24	A Simple Electrochemical Swab Assay for the Rapid Quantification of Clonazepam in Unprocessed Saliva Enabled by Lubricin Antifouling Coatings. ChemElectroChem, 2020, 7, 2851-2858.	1.7	22
25	Effective detection of corrected dystrophin loci inmdxmouse myogenic precursors. Human Mutation, 2007, 28, 816-823.	1.1	21
26	Combination of agrin and laminin increase acetylcholine receptor clustering and enhance functional neuromuscular junction formation <i>In vitro</i> . Developmental Neurobiology, 2016, 76, 551-565.	1.5	21
27	Tuneable Hybrid Hydrogels via Complementary Self-Assembly of a Bioactive Peptide with a Robust Polysaccharide. ACS Biomaterials Science and Engineering, 2021, 7, 3340-3350.	2.6	20
28	Adhesion and Self-Assembly of Lubricin (PRG4) Brush Layers on Different Substrate Surfaces. Langmuir, 2019, 35, 15834-15848.	1.6	19
29	Lubricin (PRG4) reduces fouling susceptibility and improves sensitivity of carbon-based electrodes. Electrochimica Acta, 2020, 333, 135574.	2.6	19
30	Nanocomposite-Coated Silk-Based Artificial Conduits: The Influence of Structures on Regeneration of the Peripheral Nerve. ACS Applied Bio Materials, 2020, 3, 4454-4464.	2.3	18
31	Engineering skeletal muscle - from two to three dimensions. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1-e6.	1.3	16
32	DNA electroporation in vivo targets mature fibres in dystrophic mdx muscle. Neuromuscular Disorders, 2005, 15, 630-641.	0.3	15
33	Fabrication of a Biocompatible Liquid Crystal Graphene Oxide–Gold Nanorods Electro―and Photoactive Interface for Cell Stimulation. Advanced Healthcare Materials, 2019, 8, 1801321.	3.9	15
34	Evaluation of Sca-1 and c-Kit As Selective Markers for Muscle Remodelling by Nonhemopoietic Bone Marrow Cells. Stem Cells, 2007, 25, 1364-1374.	1.4	14
35	In vitro growth and differentiation of primary myoblasts on thiophene based conducting polymers. Biomaterials Science, 2013, 1, 983.	2.6	14
36	Printing between the Lines: Intricate Biomaterial Structures Fabricated via Negative Embodied Sacrificial Template 3D (NEST3D) Printing. Advanced Materials Technologies, 2021, 6, 2100189.	3.0	14

Anita F Quigley

#	Article	IF	CITATIONS
37	Wet-Spun Trojan Horse Cell Constructs for Engineering Muscle. Frontiers in Chemistry, 2020, 8, 18.	1.8	13
38	Enhancing Peptide Biomaterials for Biofabrication. Polymers, 2021, 13, 2590.	2.0	11
39	3D Bioprinting and Differentiation of Primary Skeletal Muscle Progenitor Cells. Methods in Molecular Biology, 2020, 2140, 229-242.	0.4	10
40	In vivo biocompatibility of porous and non-porous polypyrrole based trilayered actuators. Journal of Materials Science: Materials in Medicine, 2017, 28, 172.	1.7	9
41	Self-Assembly of Lubricin (PRG-4) Brushes on Graphene Oxide Affords Stable 2D-Nanosheets in Concentrated Electrolytes and Complex Fluids. ACS Applied Nano Materials, 2020, 3, 11527-11542.	2.4	9
42	Replace and repair: Biomimetic bioprinting for effective muscle engineering. APL Bioengineering, 2021, 5, 031502.	3.3	9
43	Matured Myofibers in Bioprinted Constructs with In Vivo Vascularization and Innervation. Gels, 2021, 7, 171.	2.1	9
44	Lubricin (PRG4) Antiadhesive Coatings Mitigate Electrochemical Impedance Instabilities in Polypyrrole Bionic Electrodes Exposed to Fouling Fluids. ACS Applied Bio Materials, 2020, 3, 8032-8039.	2.3	8
45	A Novel Clinical Phenotype of Myopathy, Sensorimotor Neuropathy, Infertility, and Hypogonadism With Multiple Mitochondrial DNA Deletions. Journal of Clinical Neuromuscular Disease, 2001, 3, 77-82.	0.3	7
46	Lubricin as a tool for controlling adhesion <i>in vivo</i> and <i>ex vivo</i> . Biointerphases, 2021, 16, 020802.	0.6	7
47	Abnormalities of mitochondrial dynamics and bioenergetics in neuronal cells from CDKL5 deficiency disorder. Neurobiology of Disease, 2021, 155, 105370.	2.1	6
48	Automated quantification of neurite outgrowth orientation distributions on patterned surfaces. Journal of Neural Engineering, 2014, 11, 046006.	1.8	5
49	Shining a light on the hidden structure of gelatin methacryloyl bioinks using small-angle X-ray scattering (SAXS). Materials Chemistry Frontiers, 2021, 5, 8025-8036.	3.2	5
50	Cellular Interactions with Lubricin and Hyaluronic Acid–Lubricin Composite Coatings on Gold Electrodes in Passive and Electrically Stimulated Environments. ACS Biomaterials Science and Engineering, 2021, 7, 3696-3708.	2.6	5
51	Microencapsulation of growth factors by microfluidic system. MethodsX, 2021, 8, 101324.	0.7	5
52	The polymerase chain reaction in the study of mitochondrial genetics. Journal of Proteomics, 1997, 36, 31-50.	2.4	4
53	Towards bioengineered skeletal muscle: recent developments in vitro and in vivo. Essays in Biochemistry, 2021, 65, 555-567.	2.1	4
54	The One-Stop Gyrification Station - Challenges and New Technologies. Progress in Neurobiology, 2021, 204, 102111.	2.8	4

Anita F Quigley

#	ARTICLE	IF	CITATIONS
55	Cell compatible encapsulation of filaments into 3D hydrogels. Biofabrication, 2016, 8, 025013.	3.7	3
56	Biodesigned bioinks for 3D printing via divalent crosslinking of self-assembled peptide-polysaccharide hybrids. Materials Today Advances, 2022, 14, 100243.	2.5	3
57	From nanoparticles to fibres: effect of dispersion composition on fibre properties. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	2
58	Potential Pulse-Facilitated Active Adsorption of Lubricin Polymer Brushes Can Both Accelerate Self-Assembly and Control Grafting Density. Langmuir, 2021, 37, 11188-11193.	1.6	2
59	Hybrid Selfâ€Assembling Peptide/Gelatin Methacrylate (GelMA) Bioink Blend for Improved Bioprintability and Primary Myoblast Response. Advanced NanoBiomed Research, 0, , 2100106.	1.7	2
60	Novel Boundary Lubrication Mechanisms from Molecular Pillows of Lubricin Brush-Coated Graphene Oxide Nanosheets. Langmuir, 2022, 38, 5351-5360.	1.6	2
61	Therapeutic DNA Delivery to Skeletal Muscle. Current Genomics, 2006, 7, 179-190.	0.7	1
62	Electroporation of Corrective Nucleic Acids (CNA) In Vivo to Promote Gene Correction in Dystrophic Muscle. Methods in Molecular Biology, 2008, 423, 405-419.	0.4	1
63	Myoâ€regenerative Scaffolds: Electrical Stimulation of Myoblast Proliferation and Differentiation on Aligned Nanostructured Conductive Polymer Platforms (Adv. Healthcare Mater. 6/2012). Advanced Healthcare Materials, 2012, 1, 815-815.	3.9	0
64	Can the Wet – State Conductivity of Hydrogels be Improved by Incorporation of Spherical Conducting Nanoparticles?. Materials Research Society Symposia Proceedings, 2014, 1717, 1.	0.1	0
65	Electrical Cell Stimulation: Fabrication of a Biocompatible Liquid Crystal Graphene Oxide–Gold Nanorods Electro―and Photoactive Interface for Cell Stimulation (Adv. Healthcare Mater. 9/2019). Advanced Healthcare Materials, 2019, 8, 1970036.	3.9	0
66	Three dimensional microenvironments on multi-electrode arrays produce neuronal networks that function like the brain. Frontiers in Cellular Neuroscience, 0, 12, .	1.8	0
67	Electrical stimulation of cells derived from muscle. , 2018, , 297-322.		Ο