Nijat Imin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4339780/publications.pdf

Version: 2024-02-01

315739 172457 2,948 41 29 38 citations h-index g-index papers 3100 41 41 41 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Flavonoids: New Roles for Old Molecules. Journal of Integrative Plant Biology, 2010, 52, 98-111.	8.5	587
2	The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. Journal of Experimental Botany, 2013, 64, 5395-5409.	4.8	182
3	Effect of early cold stress on the maturation of rice anthers. Proteomics, 2004, 4, 1873-1882.	2.2	175
4	CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. Journal of Experimental Botany, 2013, 64, 5383-5394.	4.8	137
5	Proteomic Analysis of Somatic Embryogenesis in Medicago truncatula. Explant Cultures Grown under 6-Benzylaminopurine and 1-Naphthaleneacetic Acid Treatments. Plant Physiology, 2005, 137, 1250-1260.	4.8	129
6	Proteome analysis of male gametophyte development in rice anthers. Proteomics, 2003, 3, 738-751.	2.2	128
7	Characterisation of rice anther proteins expressed at the young microspore stage. Proteomics, 2001, 1, 1149-1161.	2.2	112
8	Low Temperature Treatment at the Young Microspore Stage Induces Protein Changes in Rice Anthers. Molecular and Cellular Proteomics, 2006, 5, 274-292.	3.8	106
9	Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development. Plant Physiology, 2016, 171, 2536-2548.	4.8	100
10	Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics, 2004, 4, 1883-1896.	2.2	98
11	Factors involved in root formation in Medicago truncatula. Journal of Experimental Botany, 2006, 58, 439-451.	4.8	93
12	Proteomic analysis of temperature stress in plants. Proteomics, 2010, 10, 828-845.	2.2	91
13	Novel MtCEP1 peptides produced <i>in vivo</i> differentially regulate root development in <i>Medicago truncatula</i> . Journal of Experimental Botany, 2015, 66, 5289-5300.	4.8	84
14	CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. Journal of Experimental Botany, 2018, 69, 1829-1836.	4.8	72
15	Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in <i>Medicago truncatula</i> . New Phytologist, 2011, 190, 865-874.	7.3	66
16	Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes. BMC Genomics, 2014, 15, 870.	2.8	63
17	Evaluation of proteome reference maps for cross-species identification of proteins by peptide mass fingerprinting. Proteomics, 2002, 2, 1288-1303.	2.2	60
18	CLE peptide triâ€arabinosylation and peptide domain sequence composition are essential for SUNNâ€dependent autoregulation of nodulation in <i>Medicago truncatula</i> . New Phytologist, 2018, 218, 73-80.	7.3	60

#	Article	IF	Citations
19	Characterization of the Secretome of Suspension Cultures of Medicago Species Reveals Proteins Important for Defense and Development. Journal of Proteome Research, 2008, 7, 4508-4520.	3.7	59
20	Small-peptide signals that control root nodule number, development, and symbiosis. Journal of Experimental Botany, 2015, 66, 5171-5181.	4.8	56
21	Identification of Ethylene-Mediated Protein Changes during Nodulation inMedicagotruncatulaUsing Proteome Analysis. Journal of Proteome Research, 2006, 5, 3084-3095.	3.7	50
22	Solution NMR studies of the plant peptide hormone CEP inform function. FEBS Letters, 2013, 587, 3979-3985.	2.8	45
23	Regulation of Arabidopsis root development by small signaling peptides. Frontiers in Plant Science, 2013, 4, 352.	3.6	43
24	Transcriptional profiling of Medicago truncatula meristematic root cells. BMC Plant Biology, 2008, 8, 21.	3.6	40
25	Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules. Frontiers in Plant Science, 2013, 4, 385.	3.6	40
26	Genome-wide transcriptional analysis of super-embryogenic Medicago truncatula explant cultures. BMC Plant Biology, 2008, 8, 110.	3.6	39
27	CEP–CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth. Journal of Experimental Botany, 2019, 70, 3955-3967.	4.8	37
28	Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to the extracellular fluids of Medicago and soybean. Journal of Experimental Botany, 2011, 62, 4649-4659.	4.8	34
29	CEP3 levels affect starvation-related growth responses of the primary root. Journal of Experimental Botany, 2019, 70, 4763-4774.	4.8	32
30	microRNA profiling of root tissues and root forming explant cultures in Medicago truncatula. Planta, 2013, 238, 91-105.	3.2	30
31	A proteome study of the proliferation of culturedMedicago truncatula protoplasts. Proteomics, 2007, 7, 722-736.	2.2	29
32	The Peptide Hormone Receptor CEPR1 Functions in the Reproductive Tissue to Control Seed Size and Yield. Plant Physiology, 2020, 183, 620-636.	4.8	17
33	New role for a CEP peptide and its receptor: complex control of lateral roots. Journal of Experimental Botany, 2016, 67, 4797-4799.	4.8	16
34	Global gene expression analysis of in vitro root formation in Medicago truncatula. Functional Plant Biology, 2010, 37, 1117.	2.1	12
35	Proteomic analysis reveals developmentally expressed rice homologues of grass group II pollen allergens. Functional Plant Biology, 2003, 30, 843.	2.1	10
36	Proteomics as a Functional Genomics Tool. , 2003, 236, 395-414.		8

#	Article	IF	CITATIONS
37	Characterisation of rice anther proteins expressed at the young microspore stage. Proteomics, 2001, 1, 1149-1161.	2.2	6
38	Factors that Mediate Root Initiation in Plants. Plant Signaling and Behavior, 2007, 2, 249-250.	2.4	1
39	Proteomics and the Analysis of Nodulation. Methods in Molecular Biology, 2013, 1069, 259-269.	0.9	1
40	Anther Proteome. , 0, , 249-260.		0
41	The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots. HAYATI Journal of Biosciences, 2013, 20, 105-116.	0.4	0