
Sunghyun Nam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4339520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose lβ and cellulose II. Carbohydrate Polymers, 2016, 135, 1-9.	10.2	417
2	Recent Developments of Carboxymethyl Cellulose. Polymers, 2021, 13, 1345.	4.5	258
3	Effects of ball milling on the structure of cotton cellulose. Cellulose, 2019, 26, 305-328.	4.9	253
4	Intumescent flame-retardant cotton produced by tannic acid and sodium hydroxide. Journal of Analytical and Applied Pyrolysis, 2017, 126, 239-246.	5.5	67
5	Importance of poly(ethylene glycol) conformation for the synthesis of silver nanoparticles in aqueous solution. Journal of Nanoparticle Research, 2011, 13, 3755-3764.	1.9	52
6	Nanocellulose as a colorimetric biosensor for effective and facile detection of human neutrophil elastase. Carbohydrate Polymers, 2019, 216, 360-368.	10.2	42
7	Internally dispersed synthesis of uniform silver nanoparticles via in situ reduction of [Ag(NH3)2]+ along natural microfibrillar substructures of cotton fiber. Cellulose, 2014, 21, 2963-2972.	4.9	30
8	A reinforced thermal barrier coat of a Na–tannic acid complex from the view of thermal kinetics. RSC Advances, 2019, 9, 10914-10926.	3.6	24
9	Enhanced thermal and combustion resistance of cotton linked to natural inorganic salt components. Cellulose, 2014, 21, 791-802.	4.9	23
10	High resistance to thermal decomposition in brown cotton is linked to tannins and sodium content. Cellulose, 2016, 23, 1137-1152.	4.9	23
11	Natural resistance of raw cotton fiber to heat evidenced by the suppressed depolymerization of cellulose. Polymer Degradation and Stability, 2017, 138, 133-141.	5.8	23
12	Method for identifying the triple transition (glass transition-dehydration-crystallization) of amorphous cellulose in cotton. Carbohydrate Polymers, 2020, 228, 115374.	10.2	23
13	Silver Nanoparticle-Infused Cotton Fiber: Durability and Aqueous Release of Silver in Laundry Water. Journal of Agricultural and Food Chemistry, 2020, 68, 13231-13240.	5.2	16
14	Chemical Composition and Thermogravimetric Behaviors of Glanded and Glandless Cottonseed Kernels. Molecules, 2022, 27, 316.	3.8	16
15	Water-based binary polyol process for the controllable synthesis of silver nanoparticles inhibiting human and foodborne pathogenic bacteria. RSC Advances, 2018, 8, 21937-21947.	3.6	15
16	An environmentally-friendly sandwich-like structured nanocoating system for wash durable, flame retardant, and hydrophobic cotton fabrics. Cellulose, 2021, 28, 10277-10289.	4.9	15
17	Quantification and spatial resolution of silver nanoparticles in cotton textiles by surface-enhanced Raman spectroscopy (SERS). Journal of Nanoparticle Research, 2020, 22, 1.	1.9	12
18	Evaluation of three flame retardant (FR) grey cotton blend nonwoven fabrics using micro-scale combustion calorimeter. Journal of Fire Sciences, 2012, 30, 187-200.	2.0	11

SUNGHYUN NAM

#	Article	IF	CITATIONS
19	Comparison of the wood bonding performance of water- and alkali-soluble cottonseed protein fractions. Journal of Adhesion Science and Technology, 2021, 35, 1500-1517.	2.6	10
20	Surface and Thermal Characterization of Cotton Fibers of Phenotypes Differing in Fiber Length. Polymers, 2021, 13, 994.	4.5	9
21	Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials. Journal of Functional Biomaterials, 2017, 8, 9.	4.4	8
22	Brown Cotton Fibers Self-Produce Ag Nanoparticles for Regenerating Their Antimicrobial Surfaces. ACS Applied Nano Materials, 2021, 4, 13112-13122.	5.0	7
23	Silver Nanoparticle-Intercalated Cotton Fiber for Catalytic Degradation of Aqueous Organic Dyes for Water Pollution Mitigation. Nanomaterials, 2022, 12, 1621.	4.1	6
24	Antimicrobial and Hemostatic Activities of Cotton-Based Dressings Designed to Address Prolonged Field Care Applications. Military Medicine, 2021, 186, 116-121.	0.8	4
25	Thermosensitive textiles made from silver nanoparticle-filled brown cotton fibers. Nanoscale Advances, 2022, 4, 3725-3736.	4.6	4
26	Thermal properties and surface chemistry of cotton varieties mineralized with calcium carbonate polymorphs by cyclic dipping. RSC Advances, 2020, 10, 35214-35225.	3.6	3
27	Flame Resistant Cotton Fabric Containing Casein and Inorganic Materials Using an Environmentally-Friendly Microwave Assisted Technique. Fibers and Polymers, 2020, 21, 2246-2252.	2.1	3
28	Practical SERS method for assessment of the washing durability of textiles containing silver nanoparticles. Analytical Methods, 2020, 12, 1186-1196.	2.7	2
29	Thermally Induced Structural Transitions in Cotton Fiber Revealed by a Finite Mixture Model of Tenacity Distribution. ACS Sustainable Chemistry and Engineering, 2018, 6, 7420-7431.	6.7	1
30	Changing the Landscape: An Introduction to the Agricultural and Food Chemistry Technical Program at the 258th American Chemical Society National Meeting in San Diego. Journal of Agricultural and Food Chemistry, 2020, 68, 12769-12772.	5.2	0