Ryan C Garrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4338618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Molecular Ecology, 2010, 19, 3746-3759.	3.9	170
2	FINE-SCALE PHYLOGEOGRAPHIC CONGRUENCE DESPITE DEMOGRAPHIC INCONGRUENCE IN TWO LOW-MOBILITY SAPROXYLIC SPRINGTAILS. Evolution; International Journal of Organic Evolution, 2008, 62, 1103-1118.	2.3	129
3	The evolution of phylogeographic data sets. Molecular Ecology, 2015, 24, 1164-1171.	3.9	119
4	Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation. BMC Evolutionary Biology, 2010, 10, 118.	3.2	112
5	Not just vicariance: phylogeography of a Sonoran Desert euphorb indicates a major role of range expansion along the Baja peninsula. Molecular Ecology, 2009, 18, 1916-1931.	3.9	84
6	Phylogeography recapitulates topography: very fine-scale local endemism of a saproxylic â€~giant' springtail at Tallaganda in the Great Dividing Range of south-east Australia. Molecular Ecology, 2004, 13, 3329-3344.	3.9	82
7	A tale of two flatties: different responses of two terrestrial flatworms to past environmental climatic fluctuations at Tallaganda in montane southeastern Australia. Molecular Ecology, 2006, 15, 4513-4531.	3.9	79
8	Giant tortoise genomes provide insights into longevity and age-related disease. Nature Ecology and Evolution, 2019, 3, 87-95.	7.8	79
9	Babies and bathwater: a comment on the premature obituary for nested clade phylogeographical analysis. Molecular Ecology, 2008, 17, 1401-1403.	3.9	72
10	Lineage fusion in <scp>G</scp> alápagos giant tortoises. Molecular Ecology, 2014, 23, 5276-5290.	3.9	59
11	Description of a New Galapagos Giant Tortoise Species (Chelonoidis; Testudines: Testudinidae) from Cerro Fatal on Santa Cruz Island. PLoS ONE, 2015, 10, e0138779.	2.5	54
12	Catchments catch all: long-term population history of a giant springtail from the southeast Australian highlands - a multigene approach. Molecular Ecology, 2007, 16, 1865-1882.	3.9	51
13	Genetic rediscovery of an â€~extinct' Galápagos giant tortoise species. Current Biology, 2012, 22, R10-R11.	3.9	46
14	Montane refuges and topographic complexity generate and maintain invertebrate biodiversity: recurring themes across space and time. Journal of Insect Conservation, 2011, 15, 469-478.	1.4	42
15	The genetic legacy of Lonesome George survives: Giant tortoises with Pinta Island ancestry identified in GalĂ¡pagos. Biological Conservation, 2013, 157, 225-228.	4.1	39
16	Inference of Population History by Coupling Exploratory and Model-Driven Phylogeographic Analyses. International Journal of Molecular Sciences, 2010, 11, 1190-1227.	4.1	32
17	Population genomics through time provides insights into the consequences of decline and rapid demographic recovery through headâ€starting in a Galapagos giant tortoise. Evolutionary Applications, 2018, 11, 1811-1821.	3.1	29
18	Naturally rare versus newly rare: demographic inferences on two timescales inform conservation of GalÃ;pagos giant tortoises. Ecology and Evolution, 2015, 5, 676-694.	1.9	28

RYAN C GARRICK

#	Article	IF	CITATIONS
19	Theory, practice, and conservation in the age of genomics: The Galápagos giant tortoise as a case study. Evolutionary Applications, 2018, 11, 1084-1093.	3.1	28
20	Identification of Genetically Important Individuals of the Rediscovered Floreana Galápagos Giant Tortoise (Chelonoidis elephantopus) Provides Founders for Species Restoration Program. Scientific Reports, 2017, 7, 11471.	3.3	27
21	Ecological coassociations influence species' responses to past climatic change: an example from a <scp>S</scp> onoran <scp>D</scp> esert bark beetle. Molecular Ecology, 2013, 22, 3345-3361.	3.9	24
22	Development and application of three-tiered nuclear genetic markers for basal Hexapods using single-stranded conformation polymorphism coupled with targeted DNA sequencing. , 2006, 7, 11.		23
23	Extending phylogeography to account for lineage fusion. Journal of Biogeography, 2019, 46, 268-278.	3.0	23
24	Phylogeography of Saproxylic and Forest Floor Invertebrates from Tallaganda, South-eastern Australia. Insects, 2012, 3, 270-294.	2.2	17
25	Strong spatialâ€genetic congruence between a woodâ€feeding cockroach and its bacterial endosymbiont, across a topographically complex landscape. Journal of Biogeography, 2017, 44, 1500-1511.	3.0	17
26	Lineage Identification and Genealogical Relationships Among Captive Galápagos Tortoises. Zoo Biology, 2012, 31, 107-120.	1.2	16
27	Cryptic structure and niche divergence within threatened Galápagos giant tortoises from southern Isabela Island. Conservation Genetics, 2014, 15, 1357-1369.	1.5	16
28	Environmental Complexity and Biodiversity: The Multi-Layered Evolutionary History of a Log-Dwelling Velvet Worm in Montane Temperate Australia. PLoS ONE, 2013, 8, e84559.	2.5	16
29	Insights into the ecology, genetics and distribution of <i>Lucanus elaphus</i> Fabricius (Coleoptera:) Tj ETQq1	1 0.78431 3.0	4 rgBT /Overld
30	Cryptic diversity in the southern Appalachian Mountains: genetic data reveal that the red centipede, Scolopocryptops sexspinosus, is a species complex. Journal of Insect Conservation, 2018, 22, 799-805.	1.4	14
31	Crayfish populations genetically fragmented in streams impounded for 36–104 years. Freshwater Biology, 2020, 65, 768-785.	2.4	14
32	Regional replication of landscape genetics analyses of the Mississippi slimy salamander, Plethodon mississippi. Landscape Ecology, 2020, 35, 337-351.	4.2	14
33	Temporal Mitogenomics of the Galapagos Giant Tortoise from Pinzón Reveals Potential Biases in Population Genetic Inference. Journal of Heredity, 2018, 109, 631-640.	2.4	12
34	Ecological Drivers of Species Distributions and Niche Overlap for Three Subterranean Termite Species in the Southern Appalachian Mountains, USA. Insects, 2019, 10, 33.	2.2	12
35	Identification of Eastern United States Reticulitermes Termite Species via PCR-RFLP, Assessed Using Training and Test Data. Insects, 2015, 6, 524-537.	2.2	11
36	Nonrecombining Genes in a Recombination Environment: The Drosophila "Dot" Chromosome. Molecular Biology and Evolution, 2011, 28, 825-833.	8.9	10

RYAN C GARRICK

#	Article	IF	CITATIONS
37	The role of glacialâ€interglacial climate change in shaping the genetic structure of eastern subterranean termites in the southern Appalachian Mountains, USA. Ecology and Evolution, 2019, 9, 4621-4636.	1.9	10
38	A set of polymorphic nuclear intron markers for conservation genetics and phylogeography of Euphorbia species (Pedilanthus clade). Conservation Genetics, 2008, 9, 1673-1676.	1.5	9
39	Trophic interactions among dead-wood-dependent forest arthropods in the southern Appalachian Mountains, USA. Food Webs, 2019, 18, e00112.	1.2	8
40	Demographic history and patterns of molecular evolution from whole genome sequencing in the radiation of Galapagos giant tortoises. Molecular Ecology, 2021, 30, 6325-6339.	3.9	7
41	New Molecular Tools for Dendroctonus frontalis (Coleoptera: Curculionidae: Scolytinae) Reveal an East–West Genetic Subdivision of Early Pleistocene Origin. Insect Systematics and Diversity, 2019, 3, .	1.7	6
42	The Phylogeographic Shortfall in Hexapods: A Lot of Leg Work Remaining. Insect Systematics and Diversity, 2021, 5, .	1.7	6
43	True syntopy between chromosomal races of the Cryptocercus punctulatus wood-roach species complex. Insectes Sociaux, 2016, 63, 353-355.	1.2	5
44	Development and characterization of tetranucleotide microsatellite loci for the American alligator (Alligator mississippiensis). Conservation Genetics Resources, 2012, 4, 567-570.	0.8	4
45	Two Divergent Genetic Lineages within the Horned Passalus Beetle, Odontotaenius disjunctus (Coleoptera: Passalidae): An Emerging Model for Insect Behavior, Physiology, and Microbiome Research. Insects, 2019, 10, 159.	2.2	4
46	Efficient summary statistics for detecting lineage fusion from phylogeographic datasets. Journal of Biogeography, 2020, 47, 2129-2140.	3.0	4
47	Genetic insights into family group co-occurrence in <i>Cryptocercus punctulatus</i> , a sub-social woodroach from the southern Appalachian Mountains. PeerJ, 2017, 5, e3127.	2.0	4
48	Variable nuclear markers for a Sonoran Desert bark beetle, Araptus attenuatus Wood (Curculionidae:) Tj ETQq0	0 0 ₁ .gBT /0	Dverlock 10 T
49	The effect of sampling density and study area size on landscape genetics inferences for the Mississippi slimy salamander (<i>Plethodon mississippi</i>). Ecology and Evolution, 2021, 11, 6289-6304.	1.9	3
50	Is Phylogeographic Congruence Predicted by Historical Habitat Stability, or Ecological Co-associations?. Insect Systematics and Diversity, 2021, 5, .	1.7	3
51	A new lineage of Galapagos giant tortoises identified from museum samples. Heredity, 2022, 128, 261-270.	2.6	3
52	Molecular Tools for Assessing Saproxylic Insect Diversity. Zoological Monographs, 2018, , 849-884.	1.1	2
53	Thesis summary. Australian Journal of Entomology, 2007, 46, 346-347.	1.1	0
54	Weak spatial-genetic structure in a native invasive, the southern pine beetle (<i>Dendroctonus) Tj ETQq0 0 0 rg</i>	3T /Overlo 2.0	ck 10 Tf 50 6

4