Gary S Goldberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/433819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterocellular N-cadherin junctions enable nontransformed cells to inhibit the growth of adjacent transformed cells. Cell Communication and Signaling, 2022, 20, 19.	6.5	1
2	Independent effects of Src kinase and podoplanin on anchorage independent cell growth and migration. Molecular Carcinogenesis, 2022, , .	2.7	1
3	Effects of Maackia amurensis seed lectin (MASL) on oral squamous cell carcinoma (OSCC) gene expression and transcriptional signaling pathways. Journal of Cancer Research and Clinical Oncology, 2021, 147, 445-457.	2.5	17
4	Evidence that Maackia amurensis seed lectin (MASL) exerts pleiotropic actions on oral squamous cells with potential to inhibit SARS-CoV-2 infection and COVID-19 disease progression. Experimental Cell Research, 2021, 403, 112594.	2.6	15
5	Environmental control of mammary carcinoma cell expansion by acidification and spheroid formation in vitro. Scientific Reports, 2020, 10, 21959.	3.3	3
6	Src and podoplanin forge a path to destruction. Drug Discovery Today, 2019, 24, 241-249.	6.4	30
7	Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target. Oral Oncology, 2018, 78, 126-136.	1.5	41
8	Podoplanin: An emerging cancer biomarker and therapeutic target. Cancer Science, 2018, 109, 1292-1299.	3.9	134
9	Components in aqueous Hibiscus rosa-sinensis flower extract inhibit inÂvitro melanoma cell growth. Journal of Traditional and Complementary Medicine, 2017, 7, 45-49.	2.7	20
10	AHNAK enables mammary carcinoma cells to produce extracellular vesicles that increase neighboring fibroblast cell motility. Oncotarget, 2016, 7, 49998-50016.	1.8	50
11	PKA and CDK5 can phosphorylate specific serines on the intracellular domain of podoplanin (PDPN) to inhibit cell motility. Experimental Cell Research, 2015, 335, 115-122.	2.6	21
12	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
13	Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis, 2015, 36, S2-S18.	2.8	55
14	Podoplanin. Journal of Neuropathology and Experimental Neurology, 2015, 74, 64-74.	1.7	41
15	Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis. Annals of the Rheumatic Diseases, 2015, 74, 275-284.	0.9	65
16	Contact Normalization or Escape from the Matrix. , 2015, , 297-342.		4
17	Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms. Oncotarget, 2015, 6, 9045-9060.	1.8	77
18	Serines in the Intracellular Tail of Podoplanin (PDPN) Regulate Cell Motility. Journal of Biological Chemistry, 2013, 288, 12215-12221.	3.4	63

GARY S GOLDBERG

#	Article	IF	CITATIONS
19	Src Points the Way to Biomarkers and Chemotherapeutic Targets. Genes and Cancer, 2012, 3, 426-435.	1.9	18
20	Plant Lectin Can Target Receptors Containing Sialic Acid, Exemplified by Podoplanin, to Inhibit Transformed Cell Growth and Migration. PLoS ONE, 2012, 7, e41845.	2.5	61
21	Maternal Diet, C-Reactive Protein, and the Outcome of Pregnancy. Journal of the American College of Nutrition, 2011, 30, 233-240.	1.8	18
22	Cas utilizes Nck2 to activate Cdc42 and regulate cell polarization during cell migration in response to wound healing. FEBS Journal, 2010, 277, 3502-3513.	4.7	16
23	Src Induces Podoplanin Expression to Promote Cell Migration. Journal of Biological Chemistry, 2010, 285, 9649-9656.	3.4	50
24	Src activates Abl to augment Robo1 expression in order to promote tumor cell migration. Oncotarget, 2010, 1, 198-209.	1.8	25
25	Src activates Abl to augment Robo1 expression in order to promote tumor cell migration. Oncotarget, 2010, 1, 198-209.	1.8	17
26	Src Regulates the Expression of Lin28: Implications for Cell Growth, Adhesion, and Communication. Cell Communication and Adhesion, 2009, 15, 407-409.	1.0	1
27	Coordinate suppression of <i>Sdpr</i> and <i>Fhl1</i> expression in tumors of the breast, kidney, and prostate. Cancer Science, 2008, 99, 1326-1333.	3.9	74
28	Src Utilizes Cas to Block Gap Junctional Communication Mediated by Connexin43. Journal of Biological Chemistry, 2007, 282, 18914-18921.	3.4	35
29	Phosphorylation of connexin43 induced by Src: Regulation of gap junctional communication between transformed cells. Experimental Cell Research, 2007, 313, 4083-4090.	2.6	86
30	Src Uses Cas to Suppress Fhl1 in Order to Promote Nonanchored Growth and Migration of Tumor Cells. Cancer Research, 2006, 66, 1543-1552.	0.9	58
31	Individual Cas Phosphorylation Sites Are Dispensable for Processive Phosphorylation by Src and Anchorage-independent Cell Growth. Journal of Biological Chemistry, 2006, 281, 20689-20697.	3.4	37
32	Full Length and Delta Lactoferrin Display Differential Cell Localization Dynamics, but do not Act as Tumor Markers or Significantly Affect the Expression of Other Genes. Medicinal Chemistry, 2005, 1, 57-64.	1.5	10
33	Nontransformed cells can normalize gap junctional communication with transformed cells. Biochemical and Biophysical Research Communications, 2005, 333, 174-179.	2.1	11
34	Normal Cells Control the Growth of Neighboring Transformed Cells Independent of Gap Junctional Communication and Src Activity. Cancer Research, 2004, 64, 1347-1358.	0.9	67
35	Src Phosphorylates Cas on Tyrosine 253 to Promote Migration of Transformed Cells. Journal of Biological Chemistry, 2003, 278, 46533-46540.	3.4	81
36	Transfer of Biologically Important Molecules Between Cells Through Gap Junction Channels. Current Medicinal Chemistry, 2003, 10, 2045-2058.	2.4	212

GARY S GOLDBERG

#	Article	IF	CITATIONS
37	Gap Junctions between Cells Expressing Connexin 43 or 32 Show Inverse Permselectivity to Adenosine and ATP. Journal of Biological Chemistry, 2002, 277, 36725-36730.	3.4	200
38	Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nature Cell Biology, 1999, 1, 457-459.	10.3	284
39	Direct Isolation and Analysis of Endogenous Transjunctional ADP from Cx43 Transfected C6 Glioma Cells. Experimental Cell Research, 1998, 239, 82-92.	2.6	62
40	Evidence That Disruption of Connexon Particle Arrangements in Gap Junction Plaques Is Associated with Inhibition of Gap Junctional Communication by a Glycyrrhetinic Acid Derivative. Experimental Cell Research, 1996, 222, 48-53.	2.6	170
41	A connexin 43 antisense vector reduces the ability of normal cells to inhibit the foci formation of transformed cells. Molecular Carcinogenesis, 1994, 11, 106-114.	2.7	66
42	Sequence of a novel chicken genomic DNA fragment that hybridizes to the murine Hox-3.1 homeobox. Gene, 1992, 121, 397-398.	2.2	1