Teppei Fujikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4337792/publications.pdf Version: 2024-02-01

		471061	476904
29	1,564 citations	17	29
papers	citations	h-index	g-index
32	32	32	2293
all docs	docs citations	times ranked	citing authors

TEDDEL FILLIKANAA

#	Article	IF	CITATIONS
1	Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metabolism, 2022, 34, 564-580.e8.	7.2	21
2	Central regulation of glucose metabolism in an insulinâ€dependent and â€independent manner. Journal of Neuroendocrinology, 2021, 33, e12941.	1.2	9
3	CB1Rs in VMH neurons regulate glucose homeostasis but not body weight. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E146-E155.	1.8	9
4	Leptin Receptors in RIP-Cre25Mgn Neurons Mediate Anti-dyslipidemia Effects of Leptin in Insulin-Deficient Mice. Frontiers in Endocrinology, 2020, 11, 588447.	1.5	8
5	NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11299-11308.	3.3	35
6	P110β in the ventromedial hypothalamus regulates glucose and energy metabolism. Experimental and Molecular Medicine, 2019, 51, 1-9.	3.2	10
7	Glucose-Lowering by Leptin in the Absence of Insulin Does Not Fully Rely on the Central Melanocortin System in Male Mice. Endocrinology, 2019, 160, 651-663.	1.4	14
8	High-Phosphate Diet Induces Exercise Intolerance and Impairs Fatty Acid Metabolism in Mice. Circulation, 2019, 139, 1422-1434.	1.6	36
9	POMC neurons expressing leptin receptors coordinate metabolic responses to fasting via suppression of leptin levels. ELife, 2018, 7, .	2.8	77
10	SF-1 expression in the hypothalamus is required for beneficial metabolic effects of exercise. ELife, 2016, 5, .	2.8	37
11	Living without insulin: the role of leptin signaling in the hypothalamus. Frontiers in Neuroscience, 2015, 9, 108.	1.4	20
12	Enhanced insulin sensitivity in skeletal muscle and liver by physiological overexpression of SIRT6. Molecular Metabolism, 2015, 4, 846-856.	3.0	47
13	Elevated resistin levels induce central leptin resistance and increased atherosclerotic progression in mice. Diabetologia, 2014, 57, 1209-1218.	2.9	44
14	Xbp1s in Pomc Neurons Connects ER Stress with Energy Balance and Glucose Homeostasis. Cell Metabolism, 2014, 20, 471-482.	7.2	213
15	Hypothalamic-mediated control of glucose balance in the presence and absence of insulin. Aging, 2014, 6, 92-97.	1.4	5
16	Leptin Engages a Hypothalamic Neurocircuitry to Permit Survival in the Absence of Insulin. Cell Metabolism, 2013, 18, 431-444.	7.2	115
17	Revisiting the Ventral Medial Nucleus of the Hypothalamus: The Roles of SF-1 Neurons in Energy Homeostasis. Frontiers in Neuroscience, 2013, 7, 71.	1.4	93
18	Blood Lactate Functions as a Signal for Enhancing Fatty Acid Metabolism during Exercise via TGF-^ ^beta; in the Brain. Journal of Nutritional Science and Vitaminology, 2012, 58, 88-95.	0.2	7

Teppei Fujikawa

#	Article	IF	CITATIONS
19	Blood lactate functions as a signal for enhancing fatty acid metabolism during exercise via TGF-β in the brain. Journal of Nutritional Science and Vitaminology, 2012, 58, 88-95.	0.2	3
20	SIRT1 Deacetylase in SF1 Neurons Protects against Metabolic Imbalance. Cell Metabolism, 2011, 14, 301-312.	7.2	138
21	Noradrenergic projections to the ventromedial hypothalamus regulate fat metabolism during endurance exercise. Neuroscience, 2011, 190, 239-250.	1.1	21
22	Increased Noradrenergic Activity in the Ventromedial Hypothalamus during Treadmill Running in Rats. Journal of Nutritional Science and Vitaminology, 2010, 56, 185-190.	0.2	32
23	Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17391-17396.	3.3	190
24	Inhibition of fatty acid oxidation activates transforming growth factor-beta in cerebrospinal fluid and decreases spontaneous motor activity. Physiology and Behavior, 2010, 101, 370-375.	1.0	7
25	SIRT1 Deacetylase in POMC Neurons Is Required for Homeostatic Defenses against Diet-Induced Obesity. Cell Metabolism, 2010, 12, 78-87.	7.2	216
26	Central Administration of Resveratrol Improves Diet-Induced Diabetes. Endocrinology, 2009, 150, 5326-5333.	1.4	118
27	Intracisternal administration of transforming growth factor-β evokes fever through the induction of cyclooxygenase-2 in brain endothelial cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R266-R275.	0.9	6
28	Increase in transforming growth factor- \hat{l}^2 in the brain during infection is related to fever, not depression of spontaneous motor activity. Neuroscience, 2007, 144, 1133-1140.	1.1	16
29	Transforming growth factor-beta in the brain enhances fat oxidation via noradrenergic neurons in the ventromedial and paraventricular hypothalamic nucleus. Brain Research, 2007, 1173, 92-101.	1.1	11