
WacÅ,aw Makowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4337750/publications.pdf Version: 2024-02-01

MACA AN MAKONASKI

#	Article	IF	CITATIONS
1	Platinum nanoparticles supported on zeolite MWW nanosheets prepared via homogeneous solution route. Catalysis Today, 2022, 390-391, 335-342.	2.2	1
2	Catalytic activity enhancement in pillared zeolites produced from exfoliated MWW monolayers in solution. Catalysis Today, 2022, 390-391, 272-280.	2.2	5
3	Water adsorption in ideal and defective UiO-66 structures. Microporous and Mesoporous Materials, 2022, 330, 111555.	2.2	28
4	The Influence of UiOâ€66 Metal–Organic Framework Structural Defects on Adsorption and Separation of Hexane Isomers. Chemistry - A European Journal, 2022, , .	1.7	2
5	Effect of Synthesis Temperature on Water Adsorption in UiO-66 Derivatives: Experiment, DFT+D Modeling, and Monte Carlo Simulations. Journal of Physical Chemistry C, 2022, 126, 9185-9194.	1.5	6
6	Adsorption of n-alkanes in ZIF-8: Influence of crystal size and framework dynamics. Microporous and Mesoporous Materials, 2021, 312, 110730.	2.2	11
7	Demonstration of the Influence of Specific Surface Area on Reaction Rate in Heterogeneous Catalysis. Journal of Chemical Education, 2021, 98, 935-940.	1.1	43
8	Large breathing effect induced by water sorption in a remarkably stable nonporous cyanide-bridged coordination polymer. Chemical Science, 2021, 12, 9176-9188.	3.7	20
9	Structure-Catalytic Properties Relationship in Friedel Crafts Alkylation Reaction for MCM-36-Type Zeolites Obtained by Isopropanol-Assisted Pillaring. Catalysts, 2021, 11, 299.	1.6	3
10	Mixed zeolite hybrids combining the MFI structure with exfoliated MWW monolayers. Microporous and Mesoporous Materials, 2021, 324, 111300.	2.2	5
11	Carbon Dioxide Capture Enhanced by Preâ€Adsorption of Water and Methanol in UiOâ€66. Chemistry - A European Journal, 2021, 27, 14653-14659.	1.7	17
12	Guestâ€Dependent Pressureâ€Induced Spin Crossover in Fe II 4 [M IV (CN) 8] 2 (M=Mo, W) Clusterâ€Based Material Showing Persistent Solventâ€Driven Structural Transformations. Chemistry - A European Journal, 2020, 26, 11187-11198.	1.7	12
13	Adsorption of Alkanes in Zeolites LTA and FAU: Quasi-Equilibrated Thermodesorption Supported by Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 29665-29678.	1.5	7
14	Water-Stable Metal–Organic Framework with Three Hydrogen-Bond Acceptors: Versatile Theoretical and Experimental Insights into Adsorption Ability and Thermo-Hydrolytic Stability. Inorganic Chemistry, 2018, 57, 3287-3296.	1.9	16
15	Application of thermoporometry for characterization of mesoporous silicon: In search for probe liquid aimed at large pores. Microporous and Mesoporous Materials, 2018, 264, 1-7.	2.2	10
16	Pillaring of layered zeolite precursors with ferrierite topology leading to unusual molecular sieves on the micro/mesoporous border. Dalton Transactions, 2018, 47, 3029-3037.	1.6	16
17	Adsorption of Cyclohexane in Pure Silica Zeolites: Highâ€Throughput Computational Screening Validated by Experimental Data. ChemPhysChem, 2018, 19, 3364-3371.	1.0	8
18	Gate-Opening Mechanism of Hydrophilic–Hydrophobic Metal–Organic Frameworks: Molecular Simulations and Quasi-Equilibrated Desorption. Chemistry of Materials, 2018, 30, 5116-5127.	3.2	17

WacÅ,aw Makowski

#	Article	IF	CITATIONS
19	Ordering of <i>n</i> -Alkanes Adsorbed in the Micropores of AlPO ₄ -5: A Combined Molecular Simulations and Quasi-Equilibrated Thermodesorption Study. Journal of Physical Chemistry C, 2017, 121, 25292-25302.	1.5	16
20	Quasi-Equilibrated Thermodesorption Combined with Molecular Simulation for Adsorption and Separation of Hexane Isomers in Zeolites MFI and MEL. Journal of Physical Chemistry C, 2017, 121, 19226-19238.	1.5	11
21	Framework-substituted cerium MCM-22 zeolite and its interlayer expanded derivative MWW-IEZ. Catalysis Science and Technology, 2016, 6, 2742-2753.	2.1	27
22	Porosity of SBA-15 after functionalization of the surface with aminosilanes. Microporous and Mesoporous Materials, 2016, 234, 98-106.	2.2	16
23	Adsorption of <i>n</i> -Alkanes in MFI and MEL: Quasi-Equilibrated Thermodesorption Combined with Molecular Simulations. Journal of Physical Chemistry C, 2016, 120, 25338-25350.	1.5	18
24	Interconversion of the CDO Layered Precursor ZSM-55 between FER and CDO Frameworks by Controlled Deswelling and Reassembly. Chemistry of Materials, 2016, 28, 3616-3619.	3.2	16
25	Catalytic dehydration of ethanol over hierarchical ZSM-5 zeolites: studies of their acidity and porosity properties. Catalysis Science and Technology, 2016, 6, 3568-3584.	2.1	40
26	Thermoporosimetry of n-alkanes for characterization of mesoporous SBA-15 silicas – Refinement of methodology. Microporous and Mesoporous Materials, 2016, 222, 33-43.	2.2	13
27	Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45, 3400-3438.	18.7	196
28	Facile evaluation of the crystallization and quality of the transient layered zeolite MCM-56 by infrared spectroscopy. Catalysis Today, 2015, 243, 39-45.	2.2	31
29	The influence of layered double hydroxide composition on the morphology, porosity and capacitive properties of nitrogen-doped carbon materials prepared via chemical vapor deposition. Microporous and Mesoporous Materials, 2015, 201, 1-9.	2.2	9
30	Porosity characterization of SBA-15 silicas with thermoporosimetry of water and n-alkanes – The effect of the probe liquid nature. Microporous and Mesoporous Materials, 2015, 201, 141-150.	2.2	10
31	Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. Journal of Catalysis, 2014, 312, 46-57.	3.1	157
32	Porosity and accessibility of acid sites in desilicated ZSM-5 zeolites studied using adsorption of probe molecules. Microporous and Mesoporous Materials, 2014, 183, 54-61.	2.2	68
33	Activity enhancement of zeolite MCM-22 by interlayer expansion enabling higher Ce loading and room temperature CO oxidation. Journal of Materials Chemistry A, 2014, 2, 15722-15725.	5.2	29
34	High acidity unilamellar zeolite MCM-56 and its pillared and delaminated derivatives. Dalton Transactions, 2014, 43, 10501.	1.6	44
35	Application of quasi-equilibrated thermodesorption of linear and di-branched paraffin molecules for detailed porosity characterization of the mono-layered zeolite MCM-56, in comparison with MCM-22 and ZSM-5. Dalton Transactions, 2014, 43, 10574-10583.	1.6	15
36	Cobalt Spinel Catalyst for N ₂ O Abatement in the Pilot Plant Operation–Long-Term Activity and Stability in Tail Gases. Industrial & Engineering Chemistry Research, 2014, 53, 10335-10342.	1.8	41

WacÅ,aw Makowski

#	Article	IF	CITATIONS
37	Unusual adsorption behavior of volatile hydrocarbons on MOF-5 studied using thermodesorption methods. Thermochimica Acta, 2014, 587, 1-10.	1.2	17
38	Porosity of micro–mesoporous zeolites prepared via pseudomorphic transformation of zeolite Y crystals: A combined isothermal sorption and thermodesorption investigation. Microporous and Mesoporous Materials, 2013, 170, 243-250.	2.2	16
39	Application of quasi-equilibrated thermodesorption of hexane and cyclohexane for characterization of porosity of zeolites and ordered mesoporous silicas. Adsorption, 2013, 19, 537-544.	1.4	10
40	Characterization of acidic zeolite catalysts by thermodesorption and cracking of n-nonane. Microporous and Mesoporous Materials, 2013, 166, 137-143.	2.2	7
41	Synthesis of binderless zeolite aggregates (SOD, LTA, FAU) beads of 10, 70μ4m and 1mm by direct pseudomorphic transformation. Microporous and Mesoporous Materials, 2013, 176, 145-154.	2.2	27
42	Pore size distribution of micelle-templated silicas studied by thermoporosimetry using water and n-heptane. Journal of Thermal Analysis and Calorimetry, 2012, 109, 663-669.	2.0	26
43	Copper exchanged ultrastable zeolite Y – A catalyst for NH3-SCR of NOx from stationary biogas engines. Catalysis Today, 2012, 191, 6-11.	2.2	37
44	Porosity and surface properties of mesoporous silicas and their carbon replicas investigated with quasi-equlibrated thermodesorption of n-hexane and n-nonane. Journal of Porous Materials, 2010, 17, 737-745.	1.3	17
45	Studies on the equilibrated thermodesorption of n-hexane from ZSM-5 zeolite. Journal of Thermal Analysis and Calorimetry, 2010, 101, 519-526.	2.0	6
46	Characterization of the porosity and surface chemistry of mesoporous silicas by quasi-equilibrated thermodesorption of 1-butanol and n-nonane. Thermochimica Acta, 2010, 511, 82-88.	1.2	16
47	Determination of the pore size distribution of mesoporous silicas by means of quasi-equilibrated thermodesorption of n-nonane. Microporous and Mesoporous Materials, 2009, 120, 257-262.	2.2	29
48	Characterization of Acidity and Porosity of Zeolite Catalysts by the Equilibrated Thermodesorption of n-Hexane and n-Nonane. Catalysis Letters, 2008, 120, 154-160.	1.4	23
49	Hydrogenation of unsaturated carboxylic acids on functional gel-type resin supported Pd catalysts: The effect of reactant structure. Journal of Molecular Catalysis A, 2008, 279, 47-56.	4.8	5
50	Quasi-equilibrated temperature programmed desorption and adsorption: A new method for determination of the isosteric adsorption heat. Thermochimica Acta, 2007, 454, 26-32.	1.2	39
51	Determination of the adsorption heat of n-hexane and n-heptane on zeolites beta, L, 5A, 13X, Y and ZSM-5 by means of quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA). Thermochimica Acta, 2007, 465, 30-39.	1.2	43
52	Probing pore structure of microporous and mesoporous molecular sieves by quasi-equilibrated temperature programmed desorption and adsorption of n-nonane. Microporous and Mesoporous Materials, 2007, 102, 283-289.	2.2	35
53	Temperature programmed desorption of n-hexane and n-heptane from MFI and FAU zeolites. Journal of Porous Materials, 2007, 14, 27-35.	1.3	15
54	Equilibrated thermodesorption studies of adsorption of n-hexane and n-heptane on zeolites Y, ZSM-5 and ZSM-11. Applied Surface Science, 2005, 252, 707-715.	3.1	24

WacÅ,aw Μακοwski

#	Article	IF	CITATIONS
55	Promoting methane partial oxidation: homogenous additives impact on formaldehyde yield on vanadia catalyst. Catalysis Today, 2005, 101, 73-80.	2.2	7
56	Pd/polyaniline(SiO2) a novel catalyst for the hydrogenation of 2-ethylanthraquinone. Catalysis Communications, 2005, 6, 347-356.	1.6	39
57	Acetophenone Hydrogenation on Polymer–Palladium Catalysts. The Effect of Polymer Matrix. Catalysis Letters, 2004, 94, 143-156.	1.4	84
58	TPR and TPD studies of vanadia/silica catalysts for selective oxidation of methane to formaldehyde. Reaction Kinetics and Catalysis Letters, 2004, 83, 121-128.	0.6	4
59	Temperature-programmed equilibrated desorption of n-hexane as a tool for characterization of the microporous structure of zeolites. Thermochimica Acta, 2004, 412, 131-137.	1.2	17
60	Retarding, blocking and activating the cobalt catalyst by carbonaceous deposits formed in hydrogenation of ethylene. Chemical Engineering Journal, 2002, 90, 203-208.	6.6	4
61	Nickel doped hydrotalcites as catalyst precursors for the partial oxidation of light paraffins. Applied Clay Science, 2001, 18, 59-69.	2.6	72
62	Active state of model cobalt foil catalyst studied by SEM, TPR/TPO, XPS and TG. Catalysis Today, 2001, 69, 409-418.	2.2	19
63	Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Applied Catalysis B: Environmental, 1998, 18, 199-213.	10.8	109
64	Characterization and activity of novel copper-containing catalysts for selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 1997, 13, 205-217.	10.8	52
65	Synergistic effects in the transition metal catalysed hydrogenation of commercial graphites promoted by Ca(NO3)2 and pretreated with O2 or CO2. Carbon, 1996, 34, 913-916.	5.4	6
66	Fast and slow methanation pathways in hydrogenation of carbon dioxide on Feî—,Mn oxide catalysts. Journal of Molecular Catalysis, 1994, 91, 353-367.	1.2	12
67	Carbon dioxide hydrogenation on Feî—,Mn oxide catalyst doped with Rh and La. Journal of Molecular Catalysis, 1992, 75, 81-99.	1.2	11
68	A model study of carbiding of polycrystalline iron films by carbon monoxide. Reactivity of Solids, 1989, 7, 343-358.	0.3	3