Pablo Jaque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4337476/publications.pdf

Version: 2024-02-01

		172386	223716
59	2,212	29	46
papers	citations	h-index	g-index
50	50	50	1062
59	59	59	1863
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A deeper analysis of the role of synchronicity on the Bell–Evans–Polanyi plot in multibond chemical reactions: a path-dependent reaction force constant. Physical Chemistry Chemical Physics, 2022, 24, 14772-14779.	1.3	5
2	Automating the IRCâ€Analysis within <i>Eyringpy</i> . International Journal of Quantum Chemistry, 2021, 121, e26684.	1.0	7
3	1,3-Dipolar Cycloadditions by a Unified Perspective Based on Conceptual and Thermodynamics Models of Chemical Reactivity. Journal of Physical Chemistry A, 2021, 125, 801-815.	1.1	8
4	5-HT ₂ Receptor Subfamily and the Halogen Bond Promise. Journal of Chemical Information and Modeling, 2021, 61, 5001-5012.	2.5	3
5	Real-Space Approach to the Reaction Force: Understanding the Origin of Synchronicity/Nonsynchronicity in Multibond Chemical Reactions. Journal of Physical Chemistry A, 2020, 124, 1959-1972.	1.1	12
6	DFT benchmark study of the O–O bond dissociation energy in peroxides validated with high-level ab initio calculations. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	6
7	Elucidating sensing mechanisms of a pyrene excimer-based calix[4]arene for ratiometric detection of Hg(<scp>ii</scp>) and Ag(<scp>ii</scp>) and chemosensor behaviour as INHIBITION or IMPLICATION logic gates. RSC Advances, 2020, 10, 21963-21973.	1.7	14
8	Unusual Oxidative Dealkylation Strategy toward Functionalized Phenalenones as Singlet Oxygen Photosensitizers and Photophysical Studies. Journal of Organic Chemistry, 2020, 85, 10603-10616.	1.7	11
9	Reaction mechanism of hydrogen activation by frustrated Lewis pairs. Green Energy and Environment, 2019, 4, 20-28.	4.7	38
10	Scrutinizing the substituent effect on Mo-based electrocatalysts for molecular hydrogen release through axial–equatorial decomposition: a DFT study. Physical Chemistry Chemical Physics, 2019, 21, 16601-16614.	1.3	12
11	Further understanding of the Ru-centered [2+2] cycloreversion/cycloaddition involved into the interconversion of ruthenacyclobutane using the Grubbs catalysts from a reaction force analysis. Journal of Molecular Modeling, 2019, 25, 305.	0.8	4
12	Unexpected intramolecular $\langle i \rangle N \langle i \rangle$ -arylcyano- \hat{l}^2 -diketiminate cyclization in new aminoquinoline derivative complexes of aluminium for CO $\langle sub \rangle 2 \langle sub \rangle$ fixation into cyclic carbonates. New Journal of Chemistry, 2019, 43, 12059-12068.	1.4	3
13	Effect of the exchange–correlation functional on the synchronicity/nonsynchronicity in bond formation in Diels–Alder reactions: a reaction force constant analysis. Physical Chemistry Chemical Physics, 2019, 21, 7412-7428.	1.3	31
14	Solvent effect on the degree of (a)synchronicity in polar Diels-Alder reactions from the perspective of the reaction force constant analysis. Journal of Molecular Modeling, 2018, 24, 33.	0.8	6
15	A systematic electronic structure study of the O–O bond dissociation energy of hydrogen peroxide and the electron affinity of the hydroxyl radical. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	7
16	Hydrogenation of Multiple Bonds by Geminal Aminoboraneâ€Based Frustrated Lewis Pairs. Chemistry - A European Journal, 2018, 24, 8833-8840.	1.7	32
17	Effect of Lewis acid bulkiness on the stereoselectivity of Diels–Alder reactions between acyclic dienes and α,β-enals. Organic Chemistry Frontiers, 2017, 4, 1390-1399.	2.3	29
18	New imidoyl-indazole platinum (II) complexes as potential anticancer agents: Synthesis, evaluation of cytotoxicity, cell death and experimental-theoretical DNA interaction studies. Journal of Inorganic Biochemistry, 2017, 174, 90-101.	1.5	8

#	Article	IF	Citations
19	Deeper Insight into the Factors Controlling H ₂ Activation by Geminal Aminoboraneâ€Based Frustrated Lewis Pairs. Chemistry - A European Journal, 2016, 22, 18801-18809.	1.7	52
20	Theoretical characterization of first and second generation Grubbs catalysts in styrene cross-metathesis reactions: insights from conceptual DFT. Catalysis Science and Technology, 2016, 6, 755-766.	2.1	16
21	Theoretical study of dibenzyl disulfide adsorption on Cu7 cluster as a first approximation to sulfur-induced copper corrosion process. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	9
22	Clean Singlet Oxygen Production by a Re ^I Complex Embedded in a Flexible Self-Standing Polymeric Silsesquioxane Film. Journal of Physical Chemistry C, 2015, 119, 10148-10159.	1.5	32
23	A computational and conceptual DFT study on the mechanism of hydrogen activation by novel frustrated Lewis pairs. Physical Chemistry Chemical Physics, 2015, 17, 10715-10725.	1.3	20
24	Initiation stage of alkene metathesis: Insights from natural bond orbital and charge decomposition analyses. Chemical Physics Letters, 2015, 618, 174-181.	1.2	6
25	Insights into some Diels–Alder cycloadditions via the electrostatic potential and the reaction force constant. Computational and Theoretical Chemistry, 2015, 1053, 270-280.	1.1	21
26	Stability analysis of lithio-silicon Si10Li8 clusters: Planar bicyclic ring vs. three-dimensional structures. Chemical Physics Letters, 2014, 604, 72-76.	1.2	4
27	DFT Study on the Relative Stabilities of Substituted Ruthenacyclobutane Intermediates Involved in Olefin Cross-Metathesis Reactions and Their Interconversion Pathways. Organometallics, 2014, 33, 6065-6075.	1.1	31
28	Polarizability of neutral copper clusters. Journal of Molecular Modeling, 2014, 20, 2410.	0.8	13
29	Driving and retarding forces in a chemical reaction. Journal of Molecular Modeling, 2014, 20, 2351.	0.8	25
30	Complementarity of reaction force and electron localization function analyses of asynchronicity in bond formation in Diels–Alder reactions. Physical Chemistry Chemical Physics, 2014, 16, 6726.	1.3	62
31	Traditional and Ion-Pair Halogen-Bonded Complexes Between Chlorine and Bromine Derivatives and a Nitrogen-Heterocyclic Carbene. Journal of Physical Chemistry A, 2014, 118, 9552-9560.	1.1	38
32	Photoemission Spectra and Density Functional Theory Calculations of 3d Transition Metal–Aqua Complexes (Ti–Cu) in Aqueous Solution. Journal of Physical Chemistry B, 2014, 118, 6850-6863.	1.2	28
33	Perspectives on the reaction force constant. Journal of Molecular Modeling, 2013, 19, 4111-4118.	0.8	45
34	The reaction force constant as an indicator of synchronicity/nonsynchronicity in [4+2] cycloaddition processes. Physical Chemistry Chemical Physics, 2013, 15, 7311.	1.3	53
35	Fine structure in the transition region: reaction force analyses of water-assisted proton transfers. Journal of Molecular Modeling, 2013, 19, 2689-2697.	0.8	36
36	The reaction force constant: an indicator of the synchronicity in double proton transfer reactions. Physical Chemistry Chemical Physics, 2012, 14, 11125.	1.3	54

#	Article	IF	CITATIONS
37	Electronic activity in chelotropic and cycloaddition reactions. International Journal of Quantum Chemistry, 2012, 112, 2142-2153.	1.0	5
38	Theoretical analysis based on X–H bonding strength and electronic properties in red- and blue-shifting hydrogen-bonded X–Hâ√Ï€ complexes. Physical Chemistry Chemical Physics, 2011, 13, 1552-1559.	1.3	33
39	Regioselectivity of Radical Additions to Substituted Alkenes: Insight from Conceptual Density Functional Theory. Journal of Organic Chemistry, 2010, 75, 4964-4974.	1.7	19
40	Regaining the Woodward–Hoffmann rules for chelotropic reactions via conceptual DFT. Canadian Journal of Chemistry, 2010, 88, 858-865.	0.6	16
41	A New View on the Spectrochemical and Nephelauxetic Series on the Basis of Spinâ€Polarized Conceptual DFT. ChemPhysChem, 2009, 10, 847-854.	1.0	15
42	Nucleophilicity and electrophilicity of silylenes from a molecular electrostatic potential and dual descriptor perspectives. Chemical Physics Letters, 2009, 470, 180-186.	1.2	17
43	Theoretical Study of the Regioselectivity of $[2+2]$ Photocycloaddition Reactions of Acrolein with Olefins. Journal of Physical Chemistry A, 2009, 113, 332-344.	1.1	48
44	Analyzing Kullback–Leibler information profiles: an indication of their chemical relevance. Physical Chemistry Chemical Physics, 2009, 11, 476-482.	1.3	31
45	Reaction force constant and projected force constants of vibrational modes along the path of an intramolecular proton transfer reaction. Chemical Physics Letters, 2008, 456, 135-140.	1.2	80
46	The Study of Redox Reactions on the Basis of Conceptual DFT Principles: EEM and Vertical Quantities. Journal of Physical Chemistry A, 2008, 112, 6023-6031.	1.1	53
47	Computational Electrochemistry: The Aqueous Ru3+ Ru2+Reduction Potential. Journal of Physical Chemistry C, 2007, 111, 5783-5799.	1.5	126
48	Can Electrophilicity Act as a Measure of the Redox Potential of Firstâ∈Row Transition Metal lons?. Chemistry - A European Journal, 2007, 13, 9331-9343.	1.7	55
49	Molecular Structure and Bonding of Copper Cluster Monocarbonyls CunCO (n= $1\hat{a}^9$). Journal of Physical Chemistry B, 2006, 110, 6526-6536.	1.2	97
50	Reaction Force Analysis of the Effect of Mg(II) on the 1,3 Intramolecular Hydrogen Transfer in Thymine. Journal of Physical Chemistry A, 2006, 110 , $9478-9485$.	1.1	91
51	Connection between the average local ionization energy and the Fukui function. Chemical Physics Letters, 2005, 407, 143-146.	1.2	34
52	The reaction force: Three key points along an intrinsic reaction coordinate. Journal of Chemical Sciences, 2005, 117, 467-472.	0.7	122
53	The Formation of Neutral Copper Clusters from Experimental Binding Energies and Reactivity Descriptors. Journal of Physical Chemistry B, 2004, 108, 2568-2574.	1.2	30
54	Towards understanding the molecular internal rotations and vibrations and chemical reactions through the profiles of reactivity and selectivity indices: an ab initio SCF and DFT study. Molecular Physics, 2003, 101, 2841-2853.	0.8	42

Pablo Jaque

#	Article	IF	CITATIONS
55	Characterization of copper clusters through the use of density functional theory reactivity descriptors. Journal of Chemical Physics, 2002, 117, 3208-3218.	1.2	186
56	Using Sanderson's Principle to Estimate Global Electronic Properties and Bond Energies of Hydrogen-Bonded Complexes. Journal of Physical Chemistry A, 2000, 104, 8955-8964.	1.1	57
57	Theoretical Study of the Double Proton Transfer in the CHXâ^'XH···CHXâ^'XH (X = O, S) Complexes. Journal of Physical Chemistry A, 2000, 104, 995-1003.	1.1	114
58	Simultaneous determination of chlordiazepoxide and clidinium bromide in pharmaceutical formulations by derivative spectrophotometry. International Journal of Pharmaceutics, 1999, 189, 67-74.	2.6	33
59	Validity of the Minimum Polarizability Principle in Molecular Vibrations and Internal Rotations:Â An ab Initio SCF Study. Journal of Physical Chemistry A, 1999, 103, 9307-9312.	1.1	127