Lewis E Kay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4337036/publications.pdf Version: 2024-02-01

		5268	4548
233	31,325	83	171
papers	citations	h-index	g-index
253	253	253	15555
all docs	docs citations	times ranked	citing authors

LEVING E KAN

#	Article	lF	CITATIONS
1	Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. Journal of the American Chemical Society, 1992, 114, 10663-10665.	13.7	2,456
2	Backbone Dynamics of a Free and a Phosphopeptide-Complexed Src Homology 2 Domain Studied by 15N NMR Relaxation. Biochemistry, 1994, 33, 5984-6003.	2.5	2,136
3	Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry, 1989, 28, 8972-8979.	2.5	1,856
4	Intrinsic dynamics of an enzyme underlies catalysis. Nature, 2005, 438, 117-121.	27.8	1,018
5	A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry, 1990, 29, 4659-4667.	2.5	926
6	New Tools Provide New Insights in NMR Studies of Protein Dynamics. Science, 2006, 312, 224-228.	12.6	720
7	Cross-Correlated Relaxation Enhanced1Hâ^'13C NMR Spectroscopy of Methyl Groups in Very High Molecular Weight Proteins and Protein Complexes. Journal of the American Chemical Society, 2003, 125, 10420-10428.	13.7	550
8	Spectral density function mapping using 15N relaxation data exclusively. Journal of Biomolecular NMR, 1995, 6, 153-162.	2.8	494
9	Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature, 2007, 445, 618-622.	27.8	472
10	Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature, 2015, 519, 106-109.	27.8	471
11	Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nature Protocols, 2006, 1, 749-754.	12.0	469
12	A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. Journal of Biomolecular NMR, 1999, 13, 369-374.	2.8	461
13	Slow Dynamics in Folded and Unfolded States of an SH3 Domain. Journal of the American Chemical Society, 2001, 123, 11341-11352.	13.7	454
14	Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature, 2004, 430, 586-590.	27.8	445
15	Studying "Invisible―Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society, 2012, 134, 8148-8161.	13.7	430
16	A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. Journal of Biomolecular NMR, 1994, 4, 727-734.	2.8	417
17	NMR spectroscopy brings invisible protein states into focus. Nature Chemical Biology, 2009, 5, 808-814.	8.0	403
18	Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8194-E8203.	7.1	381

#	Article	IF	CITATIONS
19	Studying excited states of proteins by NMR spectroscopy. Nature Structural Biology, 2001, 8, 932-935.	9.7	366
20	Structure of an Intermediate State in Protein Folding and Aggregation. Science, 2012, 336, 362-366.	12.6	339
21	Protein dynamics and conformational disorder in molecular recognition. Journal of Molecular Recognition, 2010, 23, 105-116.	2.1	337
22	Measurement of Slow (μsâ~'ms) Time Scale Dynamics in Protein Side Chains by15N Relaxation Dispersion NMR Spectroscopy:Â Application to Asn and Gln Residues in a Cavity Mutant of T4 Lysozyme. Journal of the American Chemical Society, 2001, 123, 967-975.	13.7	298
23	Observing biological dynamics at atomic resolution using NMR. Trends in Biochemical Sciences, 2009, 34, 601-611.	7.5	295
24	A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution. Science, 2010, 329, 1312-1316.	12.6	282
25	Structural and Dynamic Analysis of Residual Dipolar Coupling Data for Proteins. Journal of the American Chemical Society, 2001, 123, 1416-1424.	13.7	277
26	Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature, 2011, 477, 111-114.	27.8	265
27	Latent and active p53 are identical in conformation. Nature Structural Biology, 2001, 8, 756-760.	9.7	261
28	Protein dynamics from NMR. Nature Structural Biology, 1998, 5, 513-517.	9.7	254
29	Production and Incorporation of15N,13C,2H (1H-δ1 Methyl) Isoleucine into Proteins for Multidimensional NMR Studies. Journal of the American Chemical Society, 1997, 119, 7599-7600.	13.7	248
30	Nuclear Magnetic Resonance Spectroscopy of High-Molecular-Weight Proteins. Annual Review of Biochemistry, 2004, 73, 107-146.	11.1	247
31	Global Folds of Highly Deuterated, Methyl-Protonated Proteins by Multidimensional NMR. Biochemistry, 1997, 36, 1389-1401.	2.5	244
32	Probing Invisible, Low-Populated States of Protein Molecules by Relaxation Dispersion NMR Spectroscopy: An Application to Protein Folding. Accounts of Chemical Research, 2008, 41, 442-451.	15.6	241
33	Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction. Science, 2013, 339, 1080-1083.	12.6	240
34	Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science, 2019, 365, 825-829.	12.6	240
35	NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12867-12874.	7.1	230
36	Four-Dimensional NMR Spectroscopy of a 723-Residue Protein:Â Chemical Shift Assignments and Secondary Structure of Malate Synthase G. Journal of the American Chemical Society, 2002, 124, 10025-10035.	13.7	225

#	Article	IF	CITATIONS
37	An Isotope Labeling Strategy for Methyl TROSY Spectroscopy. Journal of Biomolecular NMR, 2004, 28, 165-172.	2.8	221
38	Dynamic Regulation of Archaeal Proteasome Gate Opening As Studied by TROSY NMR. Science, 2010, 328, 98-102.	12.6	221
39	Probing Slow Dynamics in High Molecular Weight Proteins by Methyl-TROSY NMR Spectroscopy:Â Application to a 723-Residue Enzyme. Journal of the American Chemical Society, 2004, 126, 3964-3973.	13.7	210
40	Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. Journal of Magnetic Resonance, 1990, 89, 496-514.	0.5	205
41	Bringing Dynamic Molecular Machines into Focus by Methyl-TROSY NMR. Annual Review of Biochemistry, 2014, 83, 291-315.	11.1	200
42	An Improved ¹⁵ N Relaxation Dispersion Experiment for the Measurement of Millisecond Time-Scale Dynamics in Proteins. Journal of Physical Chemistry B, 2008, 112, 5898-5904.	2.6	196
43	Quantitative NMR spectroscopy of supramolecular complexes: Dynamic side pores in ClpP are important for product release. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16678-16683.	7.1	195
44	Comparison of different modes of two-dimensional reverse-correlation NMR for the study of proteins. Journal of Magnetic Resonance, 1990, 86, 304-318.	0.5	191
45	Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6625-6630.	7.1	191
46	Methyl TROSY: explanation and experimental verification. Magnetic Resonance in Chemistry, 2003, 41, 843-852.	1.9	190
47	Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11766-11771.	7.1	186
48	Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. Journal of Molecular Biology, 2002, 316, 101-112.	4.2	181
49	Methyl Groups as Probes of Structure and Dynamics in NMR Studies of High-Molecular-Weight Proteins. ChemBioChem, 2005, 6, 1567-1577.	2.6	175
50	Measurement of bond vector orientations in invisible excited states of proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18473-18477.	7.1	172
51	Probing Slow Time Scale Dynamics at Methyl-Containing Side Chains in Proteins by Relaxation Dispersion NMR Measurements:Â Application to Methionine Residues in a Cavity Mutant of T4 Lysozyme. Journal of the American Chemical Society, 2001, 123, 4556-4566.	13.7	170
52	Reconstructing NMR Spectra of "Invisible―Excited Protein States Using HSQC and HMQC Experiments. Journal of the American Chemical Society, 2002, 124, 12352-12360.	13.7	169
53	Solution NMR of supramolecular complexes: providing new insights into function. Nature Methods, 2007, 4, 697-703.	19.0	163
54	Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins. Journal of Biomolecular NMR, 2007, 38, 199-212.	2.8	160

#	Article	IF	CITATIONS
55	A pulsed field gradient isotope-filtered 3D 13 C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Letters, 1994, 350, 87-90.	2.8	156
56	Probing Chemical Shifts of Invisible States of Proteins with Relaxation Dispersion NMR Spectroscopy: How Well Can We Do?. Journal of the American Chemical Society, 2008, 130, 2667-2675.	13.7	155
57	Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12283-12288.	7.1	155
58	Pulsed-field gradient-enhanced three-dimensional NMR experiment for correlating 13C.alpha./.beta., 13C', and 1H.alpha. chemical shifts in uniformly carbon-13-labeled proteins dissolved in water. Journal of the American Chemical Society, 1993, 115, 2055-2057.	13.7	152
59	TROSY Triple-Resonance Four-Dimensional NMR Spectroscopy of a 46 ns Tumbling Protein. Journal of the American Chemical Society, 1999, 121, 2571-2575.	13.7	148
60	Direct demonstration of an intramolecular SH2—phosphotyrosine interaction in the Crk protein. Nature, 1995, 374, 477-479.	27.8	132
61	Improved 1HN-detected triple resonance TROSY-based experiments. Journal of Biomolecular NMR, 1999, 13, 3-10.	2.8	132
62	An NMR Experiment for the Accurate Measurement of Heteronuclear Spin-Lock Relaxation Rates. Journal of the American Chemical Society, 2002, 124, 10743-10753.	13.7	130
63	Proteasome allostery as a population shift between interchanging conformers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3454-62.	7.1	128
64	Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer. Journal of Biomolecular NMR, 2017, 67, 243-271.	2.8	123
65	Title is missing!. Journal of Biomolecular NMR, 1999, 14, 333-343.	2.8	122
66	Off-Resonance R1ïNMR Studies of Exchange Dynamics in Proteins with Low Spin-Lock Fields:Â An Application to a Fyn SH3 Domain. Journal of the American Chemical Society, 2005, 127, 713-721.	13.7	122
67	Structure of a AAA+ unfoldase in the process of unfolding substrate. ELife, 2017, 6, .	6.0	119
68	An NMR View of Protein Dynamics in Health and Disease. Annual Review of Biophysics, 2019, 48, 297-319.	10.0	113
69	Structure of a Numb PTB domain–peptide complex suggests a basis for diverse binding specificity. Nature Structural Biology, 1998, 5, 1075-1083.	9.7	112
70	A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity. Journal of Biomolecular NMR, 2007, 38, 79-88.	2.8	112
71	Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states. Journal of Biomolecular NMR, 2008, 41, 113-120.	2.8	112
72	Measurement of histidine pK _a values and tautomer populations in invisible protein states. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1705-12.	7.1	111

#	Article	IF	CITATIONS
73	Multidimensional NMR Methods for Protein Structure Determination. IUBMB Life, 2001, 52, 291-302.	3.4	110
74	Slow Internal Dynamics in Proteins:Â Application of NMR Relaxation Dispersion Spectroscopy to Methyl Groups in a Cavity Mutant of T4 Lysozyme. Journal of the American Chemical Society, 2002, 124, 1443-1451.	13.7	110
75	Tracing an allosteric pathway regulating the activity of the HslV protease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2140-2145.	7.1	106
76	NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell, 2021, 184, 577-595.	28.9	103
77	New Views of Functionally Dynamic Proteins by Solution NMR Spectroscopy. Journal of Molecular Biology, 2016, 428, 323-331.	4.2	102
78	A Multidimensional NMR Experiment for Measurement of the Protein Dihedral Angle Ï^ Based on Cross-Correlated Relaxation between1Hαâ~'13CαDipolar and13Câ€~ (Carbonyl) Chemical Shift Anisotropy Mechanisms. Journal of the American Chemical Society, 1997, 119, 11938-11940.	13.7	100
79	Multiple-Quantum Relaxation Dispersion NMR Spectroscopy Probing Millisecond Time-Scale Dynamics in Proteins:  Theory and Application. Journal of the American Chemical Society, 2004, 126, 7320-7329.	13.7	100
80	Quantitative NMR Studies of High Molecular Weight Proteins: Application to Domain Orientation and Ligand Binding in the 723 Residue Enzyme Malate Synthase G. Journal of Molecular Biology, 2003, 327, 1121-1133.	4.2	97
81	A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. ELife, 2020, 9, .	6.0	94
82	Flexibility and Ligand Exchange in a Buried Cavity Mutant of T4 Lysozyme Studied by Multinuclear NMRâ€. Biochemistry, 2000, 39, 12614-12622.	2.5	92
83	Thermal fluctuations of immature SOD1 lead to separate folding and misfolding pathways. ELife, 2015, 4, e07296.	6.0	91
84	Determination of Isoleucine Side-Chain Conformations in Ground and Excited States of Proteins from Chemical Shifts. Journal of the American Chemical Society, 2010, 132, 7589-7591.	13.7	88
85	An NMR Experiment for Measuring Methylâ^'Methyl NOEs in13C-Labeled Proteins with High Resolution. Journal of the American Chemical Society, 1998, 120, 7617-7625.	13.7	86
86	An (H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in otherwise deuterated 15N, 13C-labeled proteins. Journal of Biomolecular NMR, 1996, 8, 351-356.	2.8	85
87	An Optimized Relaxation-Based Coherence Transfer NMR Experiment for the Measurement of Side-Chain Order in Methyl-Protonated, Highly Deuterated Proteins. Journal of Physical Chemistry B, 2011, 115, 14878-14884.	2.6	85
88	Mapping the conformation of a client protein through the Hsp70 functional cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10395-10400.	7.1	85
89	Analysis of deuterium relaxation-derived methyl axis order parameters and correlation with local structure. Journal of Biomolecular NMR, 1999, 13, 181-185.	2.8	84
90	Hsp70 biases the folding pathways of client proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2794-801.	7.1	84

#	Article	IF	CITATIONS
91	Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. Journal of Magnetic Resonance, 2011, 210, 159-170.	2.1	80
92	Dramatic acceleration of protein folding by stabilization of a nonnative backbone conformation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7954-7959.	7.1	79
93	ClpB N-terminal domain plays a regulatory role in protein disaggregation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6872-81.	7.1	79
94	A 2D 13C-CEST experiment for studying slowly exchanging protein systems using methyl probes: an application to protein folding. Journal of Biomolecular NMR, 2012, 53, 303-310.	2.8	76
95	Triple-resonance NOESY-based experiments with improved spectral resolution: applications to structural characterization of unfolded, partially folded and folded proteins. Journal of Biomolecular NMR, 1997, 9, 181-200.	2.8	75
96	Sequential assignment of proline-rich regions in proteins: application to modular binding domain complexes. Journal of Biomolecular NMR, 2000, 16, 253-259.	2.8	74
97	A Dynamic molecular basis for malfunction in disease mutants of p97/VCP. ELife, 2016, 5, .	6.0	74
98	Unveiling invisible protein states with NMR spectroscopy. Current Opinion in Structural Biology, 2020, 60, 39-49.	5.7	73
99	Measurement of Methyl2H Quadrupolar Couplings in Oriented Proteins. How Uniform Is the Quadrupolar Coupling Constant?. Journal of the American Chemical Society, 1999, 121, 10608-10613.	13.7	72
100	Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease. Journal of the American Chemical Society, 2011, 133, 9063-9068.	13.7	72
101	Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles. ELife, 2017, 6, .	6.0	72
102	Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions. ELife, 2018, 7, .	6.0	71
103	Accurate Measurement of Alpha Proton Chemical Shifts of Excited Protein States by Relaxation Dispersion NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 1915-1926.	13.7	68
104	A simple strategy for 13C,1H labeling at the Ile-γ2 methyl position in highly deuterated proteins. Journal of Biomolecular NMR, 2010, 48, 129-135.	2.8	68
105	Methyl group dynamics from relaxation of double quantum filtered NMR signals. Application to deoxycholate. Journal of the American Chemical Society, 1987, 109, 3829-3835.	13.7	66
106	χ1 Torsion Angle Dynamics in Proteins from Dipolar Couplings. Journal of the American Chemical Society, 2001, 123, 6892-6903.	13.7	65
107	Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples. Journal of Biomolecular NMR, 2008, 42, 35-47.	2.8	65
108	Measurement of Proton Chemical Shifts in Invisible States of Slowly Exchanging Protein Systems by Chemical Exchange Saturation Transfer. Journal of Physical Chemistry B, 2012, 116, 14311-14317.	2.6	64

#	Article	IF	CITATIONS
109	¹³ CHD ₂ Methyl Group Probes of Millisecond Time Scale Exchange in Proteins by ¹ H Relaxation Dispersion: An Application to Proteasome Gating Residue Dynamics. Journal of the American Chemical Society, 2010, 132, 10992-10995.	13.7	60
110	Visualizing Side Chains of Invisible Protein Conformers by Solution NMR. Journal of Molecular Biology, 2014, 426, 763-774.	4.2	59
111	Structure and Dynamics of a CheY-Binding Domain of the Chemotaxis Kinase CheA Determined by Nuclear Magnetic Resonance Spectroscopyâ€,‡. Biochemistry, 1996, 35, 5633-5640.	2.5	58
112	Probing Structure in Invisible Protein States with Anisotropic NMR Chemical Shifts. Journal of the American Chemical Society, 2008, 130, 2734-2735.	13.7	58
113	Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme. PLoS Computational Biology, 2018, 14, e1006180.	3.2	58
114	Relaxation Rates of Degenerate1H Transitions in Methyl Groups of Proteins as Reporters of Side-Chain Dynamics. Journal of the American Chemical Society, 2006, 128, 7299-7308.	13.7	57
115	Reversible inhibition of the ClpP protease via an N-terminal conformational switch. Proceedings of the United States of America, 2018, 115, E6447-E6456.	7.1	56
116	Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain ¹ H Probes. Journal of the American Chemical Society, 2012, 134, 3178-3189.	13.7	55
117	Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4190-9.	7.1	55
118	An HNCO-based Pulse Scheme for the Measurement of 13Cα-1Hα One-bond Dipolar couplings in 15N, 13C Labeled Proteins. Journal of Biomolecular NMR, 1998, 12, 325-332.	2.8	54
119	Stabilization of amyloidogenic immunoglobulin light chains by small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8360-8369.	7.1	52
120	Increasing the Exchange Time-Scale That Can Be Probed by CPMG Relaxation Dispersion NMR. Journal of Physical Chemistry B, 2011, 115, 14891-14900.	2.6	51
121	Direct structure refinement of high molecular weight proteins against residual dipolar couplings and carbonyl chemical shift changes upon alignment: an application to maltose binding protein. Journal of Biomolecular NMR, 2001, 21, 31-40.	2.8	50
122	A 4D TROSY-based pulse scheme for correlating 1HNi,15Ni,13Calphai,13C'i-1 chemical shifts in high molecular weight, 15N,13C, 2H labeled proteins. Journal of Biomolecular NMR, 1999, 15, 309-313.	2.8	49
123	NMR Experiments for Studies of Dilute and Condensed Protein Phases: Application to the Phase-Separating Protein CAPRIN1. Journal of the American Chemical Society, 2020, 142, 2471-2489.	13.7	49
124	Effects of maturation on the conformational free-energy landscape of SOD1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2546-E2555.	7.1	48
125	Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6939-E6945.	7.1	47
126	An allosteric switch regulates <i>Mycobacterium tuberculosis</i> ClpP1P2 protease function as established by cryo-EM and methyl-TROSY NMR. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5895-5906.	7.1	47

#	Article	IF	CITATIONS
127	Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy. Nature Protocols, 2009, 4, 1641-1648.	12.0	46
128	Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 4156-4159.	13.8	45
129	Role of domain interactions in the aggregation of full-length immunoglobulin light chains. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 854-863.	7.1	45
130	The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. ELife, 2017, 6, .	6.0	44
131	A Sensitive Pulse Scheme for Measuring the Backbone Dihedral Angle psi Based on Cross-correlation Between (13)C (alpha)- (1)Halpha Dipolar and Carbonyl Chemical Shift Anisotropy Relaxation Interactions. Journal of Biomolecular NMR, 1998, 11, 213-220.	2.8	43
132	1Hâ^'13C Dipoleâ 'Dipole Cross-Correlated Spin Relaxation As a Probe of Dynamics in Unfolded Proteins: Application to the DrkN SH3 Domain. Journal of the American Chemical Society, 1999, 121, 3555-3556.	13.7	42
133	Investigating the Dynamics of Destabilized Nucleosomes Using Methyl-TROSY NMR. Journal of the American Chemical Society, 2018, 140, 4774-4777.	13.7	42
134	Measuring hydrogen exchange rates in invisible protein excited states. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8820-8825.	7.1	41
135	Measuring 13Cl ² chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy. Journal of Biomolecular NMR, 2009, 44, 139-155.	2.8	40
136	Assignment of Ile, Leu, and Val Methyl Correlations in Supra-Molecular Systems: An Application to Aspartate Transcarbamoylase. Journal of the American Chemical Society, 2009, 131, 16534-16543.	13.7	40
137	Enhancing the Sensitivity of CPMG Relaxation Dispersion to Conformational Exchange Processes by Multipleâ€Quantum Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 11490-11494.	13.8	40
138	Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
139	Optimal methyl labeling for studies of supra-molecular systems. Journal of Biomolecular NMR, 2010, 47, 163-169.	2.8	39
140	A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12836-12846.	7.1	38
141	Assessment of molecular structure using frame-independent orientational restraints derived from residual dipolar couplings. Journal of Biomolecular NMR, 2000, 18, 239-252.	2.8	37
142	Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. Journal of the American Chemical Society, 2011, 133, 10974-10982.	13.7	37
143	Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit. Cell Chemical Biology, 2017, 24, 443-457.e6.	5.2	37
144	Alternate Binding Modes for a Ubiquitin–SH3 Domain Interaction Studied by NMR Spectroscopy. Journal of Molecular Biology, 2009, 386, 391-405.	4.2	36

#	Article	IF	CITATIONS
145	Separating Dipolar and Chemical Exchange Magnetization Transfer Processes in ¹ Hâ€CEST. Angewandte Chemie - International Edition, 2017, 56, 6122-6125.	13.8	35
146	Dramatic Decrease in CEST Measurement Times Using Multiâ€Site Excitation. ChemPhysChem, 2018, 19, 1707-1710.	2.1	35
147	Pulse schemes for the measurement of 3JC'C gamma and 3JNC gamma scalar couplings in 15N,13C uniformly labeled proteins. Journal of Biomolecular NMR, 1997, 9, 409-422.	2.8	34
148	Quantifying Two-Bond ¹ HNâ^' ¹³ CO and One-Bond ¹ H ^α â^' ¹³ C ^α Dipolar Couplings of Invisible Protein States by Spin-State Selective Relaxation Dispersion NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 8397-8405.	13.7	34
149	Atomistic picture of conformational exchange in a T4 lysozyme cavity mutant: an experiment-guided molecular dynamics study. Chemical Science, 2016, 7, 3602-3613.	7.4	34
150	Measurement of Methyl Axis Orientations in Invisible, Excited States of Proteins by Relaxation Dispersion NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 11939-11948.	13.7	33
151	Exploiting conformational plasticity in the AAA+ protein VCP/p97 to modify function. Proceedings of the United States of America, 2017, 114, E6822-E6829.	7.1	33
152	Separating Degenerate1H Transitions in Methyl Group Probes for Single-Quantum1H-CPMG Relaxation Dispersion NMR Spectroscopy. Journal of the American Chemical Society, 2007, 129, 9514-9521.	13.7	32
153	An R1ï•expression for a spin in chemical exchange between two sites with unequal transverse relaxation rates. Journal of Biomolecular NMR, 2013, 55, 211-218.	2.8	32
154	Probing Conformational Exchange in Weakly Interacting, Slowly Exchanging Protein Systems via Off-Resonance <i>R</i> _{1I} Experiments: Application to Studies of Protein Phase Separation. Journal of the American Chemical Society, 2018, 140, 2115-2126.	13.7	32
155	Solution NMR Spectroscopy Provides an Avenue for the Study of Functionally Dynamic Molecular Machines: The Example of Protein Disaggregation. Journal of the American Chemical Society, 2016, 138, 1466-1477.	13.7	31
156	A Methylâ€TROSYâ€Based ¹ H Relaxation Dispersion Experiment for Studies of Conformational Exchange in High Molecular Weight Proteins. Angewandte Chemie - International Edition, 2019, 58, 6250-6254.	13.8	31
157	Cooperative subunit dynamics modulate p97 function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 158-167.	7.1	31
158	Assignment of 1H(N), 15N, 13C(alpha), 13CO and 13C(beta) resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy. Journal of Biomolecular NMR, 2000, 18, 173-176.	2.8	30
159	An 15N NMR Spin Relaxation Dispersion Study of the Folding of a Pair of Engineered Mutants of Apocytochrome b562. Journal of the American Chemical Society, 2005, 127, 5066-5072.	13.7	30
160	Measurement of Methyl Group Motional Parameters of Invisible, Excited Protein States by NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 12745-12754.	13.7	30
161	13CHD2–CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins. Journal of Biomolecular NMR, 2015, 63, 187-199.	2.8	30
162	Stereospecific assignment of the NH2 resonances from the primary amides of asparagine and glutamine side chains in isotopically labeled proteins. Journal of Biomolecular NMR, 1997, 9, 306-312.	2.8	29

#	Article	IF	CITATIONS
163	Improved lineshape and sensitivity in the HNCO-family of triple resonance experiments. Journal of Biomolecular NMR, 1999, 14, 273-276.	2.8	29
164	Triple resonance-based 13Cα and 13Cβ CEST experiments for studies of ms timescale dynamics in proteins. Journal of Biomolecular NMR, 2014, 60, 203-208.	2.8	28
165	Oligomeric assembly regulating mitochondrial HtrA2 function as examined by methyl-TROSY NMR. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
166	Estimates of methyl 13C and 1H CSA values (??) in proteins from cross-correlated spin relaxation. Journal of Biomolecular NMR, 2004, 30, 397-406.	2.8	26
167	Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts. Biochemistry, 2016, 55, 1346-1361.	2.5	26
168	Probing Invisible, Excited Protein States by Nonâ€Uniformly Sampled Pseudoâ€4D CEST Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 10507-10511.	13.8	25
169	Probing slowly exchanging protein systems via 13Cî±-CEST: monitoring folding of the Im7 protein. Journal of Biomolecular NMR, 2013, 55, 279-289.	2.8	24
170	The Role of Protein Thermodynamics and Primary Structure in Fibrillogenesis of Variable Domains from Immunoglobulin Light Chains. Journal of the American Chemical Society, 2019, 141, 13562-13571.	13.7	24
171	Self-Assembly of Human Profilin-1 Detected by Carr–Purcell–Meiboom–Gill Nuclear Magnetic Resonance (CPMG NMR) Spectroscopy. Biochemistry, 2017, 56, 692-703.	2.5	23
172	Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9846-E9854.	7.1	22
173	Probing slow timescale dynamics in proteins using methyl 1H CEST. Journal of Biomolecular NMR, 2017, 68, 215-224.	2.8	22
174	ClpP protease activation results from the reorganization of the electrostatic interaction networks at the entrance pores. Communications Biology, 2019, 2, 410.	4.4	20
175	Subunit-specific backbone NMR assignments of a 64 kDa trp repressor/DNA complex: a role for N-terminal residues in tandem binding. Journal of Biomolecular NMR, 1998, 11, 307-318.	2.8	19
176	A Computational Study of the Effects of ¹³ C– ¹³ C Scalar Couplings on ¹³ C CEST NMR Spectra: Towards Studies on a Uniformly ¹³ C‣abeled Protein. ChemBioChem, 2013, 14, 1709-1713.	2.6	19
177	Conformational heterogeneity in the Hsp70 chaperoneâ€substrate ensemble identified from analysis of NMRâ€detected titration data. Protein Science, 2017, 26, 2207-2220.	7.6	19
178	Measuring Solvent Hydrogen Exchange Rates by Multifrequency Excitation ¹⁵ N CEST: Application to Protein Phase Separation. Journal of Physical Chemistry B, 2018, 122, 11206-11217.	2.6	19
179	An intrinsically disordered motif regulates the interaction between the p47 adaptor and the p97 AAA+ ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26226-26236.	7.1	19
180	Simultaneous NMR characterisation of multiple minima in the free energy landscape of an RNA UUCG tetraloop. Physical Chemistry Chemical Physics, 2017, 19, 2797-2804.	2.8	18

#	Article	IF	CITATIONS
181	Interplay of buried histidine protonation and protein stability in prion misfolding. Scientific Reports, 2017, 7, 882.	3.3	17
182	Measuring Diffusion Constants of Invisible Protein Conformers by Tripleâ€Quantum ¹ H CPMG Relaxation Dispersion. Angewandte Chemie - International Edition, 2018, 57, 16777-16780.	13.8	17
183	Opening of a cryptic pocket in β-lactamase increases penicillinase activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
184	NMR studies of protein structure and dynamics – A look backwards and forwards. Journal of Magnetic Resonance, 2011, 213, 492-494.	2.1	16
185	Longitudinal relaxation optimized amide 1H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins. Journal of Biomolecular NMR, 2017, 67, 295-307.	2.8	16
186	Exploring methods to expedite the recording of CEST datasets using selective pulse excitation. Journal of Magnetic Resonance, 2018, 292, 1-7.	2.1	16
187	A methyl 1H double quantum CPMG experiment to study protein conformational exchange. Journal of Biomolecular NMR, 2018, 72, 79-91.	2.8	16
188	Exploring long-range cooperativity in the 20S proteasome core particle from <i>Thermoplasma acidophilum</i> using methyl-TROSY–based NMR. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5298-5309.	7.1	16
189	A method for incorporating dipolar couplings into structure calculations in cases of (near) axial symmetry of alignment. Journal of Biomolecular NMR, 2000, 18, 183-188.	2.8	15
190	Cross-correlated spin relaxation effects in methyl 1H CPMG-based relaxation dispersion experiments: Complications and a simple solution. Journal of Biomolecular NMR, 2005, 31, 337-342.	2.8	15
191	Advanced isotopic labeling for the NMR investigation of challenging proteins and nucleic acids. Journal of Biomolecular NMR, 2018, 71, 115-117.	2.8	15
192	Structural basis for the stabilization of amyloidogenic immunoglobulin light chains by hydantoins. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127356.	2.2	15
193	A Similar In Vitro and In Cell Lysate Folding Intermediate for the FF Domain. Journal of Molecular Biology, 2014, 426, 3214-3220.	4.2	14
194	A New Spin Probe of Protein Dynamics:Â Nitrogen Relaxation in15Nâ^'2H Amide Groups. Journal of the American Chemical Society, 2005, 127, 3220-3229.	13.7	12
195	Mechanism of Amyloidogenesis of a Bacterial AAA+ Chaperone. Structure, 2016, 24, 1095-1109.	3.3	12
196	Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4786-E4795.	7.1	12
197	Revisiting 1HN CPMG relaxation dispersion experiments: a simple modification can eliminate large artifacts. Journal of Biomolecular NMR, 2019, 73, 641-650.	2.8	12
198	A pH-Dependent Conformational Switch Controls <i>N. meningitidis</i> ClpP Protease Function. Journal of the American Chemical Society, 2020, 142, 20519-20523.	13.7	12

#	Article	IF	CITATIONS
199	Specific (15)N, NH correlations for residues in(15) N, (13)C and fractionally deuterated proteins that immediately follow methyl-containing amino acids. Journal of Biomolecular NMR, 1997, 10, 283-288.	2.8	11
200	Competing stress-dependent oligomerization pathways regulate self-assembly of the periplasmic protease-chaperone DegP. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
201	Dissecting the role of interprotomer cooperativity in the activation of oligomeric high-temperature requirement A2 protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2111257118.	7.1	11
202	Quantitative measurement of exchange dynamics in proteins via 13C relaxation dispersion of 13CHD2-labeled samples. Journal of Biomolecular NMR, 2016, 65, 59-64.	2.8	10
203	A new class of CEST experiment based on selecting different magnetization components at the start and end of the CEST relaxation element: an application to 1H CEST. Journal of Biomolecular NMR, 2018, 70, 93-102.	2.8	10
204	The A39G FF domain folds on a volcano-shaped free energy surface via separate pathways. Proceedings of the United States of America, 2021, 118, .	7.1	10
205	Complete 1H, 15N and 13C assignments, secondary structure, and topology of recombinant human interleukin-6. Journal of Biomolecular NMR, 1996, 8, 123-35.	2.8	9
206	An enhanced sensitivity methyl 1H triple-quantum pulse scheme for measuring diffusion constants of macromolecules. Journal of Biomolecular NMR, 2017, 68, 249-255.	2.8	9
207	Evolution of magnetization due to asymmetric dimerization: theoretical considerations and application to aberrant oligomers formed by apoSOD1 ^{2SH} . Physical Chemistry Chemical Physics, 2016, 18, 5720-5728.	2.8	8
208	An application of pulse-gradient double-quantum spin echoes to diffusion measurements on molecules with scalar-coupled spins. Journal of Magnetic Resonance, 1986, 67, 103-113.	0.5	7
209	Enhancing the Sensitivity of CPMG Relaxation Dispersion to Conformational Exchange Processes by Multipleâ€Quantum Spectroscopy. Angewandte Chemie, 2016, 128, 11662-11666.	2.0	7
210	Confronting the Invisible: Assignment of Protein ¹ H ^N Chemical Shifts in Cases of Extreme Broadening. Journal of Physical Chemistry Letters, 2020, 11, 3384-3389.	4.6	7
211	Allovalency observed by transferred NOE: interactions of sulfated tyrosine residues in the Nâ€ŧerminal segment of CCR5 with the CCL5 chemokine. FEBS Journal, 2021, 288, 1648-1663.	4.7	7
212	Global multi-method analysis of interaction parameters for reversibly self-associating macromolecules at high concentrations. Scientific Reports, 2021, 11, 5741.	3.3	7
213	The methyl 13C-edited/13C-filtered transferred NOE for studying protein interactions with short linear motifs. Journal of Biomolecular NMR, 2020, 74, 681-693.	2.8	7
214	Probing allosteric interactions in homo-oligomeric molecular machines using solution NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
215	Towards autonomous analysis of chemical exchange saturation transfer experiments using deep neural networks. Journal of Biomolecular NMR, 2022, 76, 75-86.	2.8	7
216	Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST. Journal of Biomolecular NMR, 2016, 65, 143-156.	2.8	6

#	Article	IF	CITATIONS
217	Artifacts can emerge in spectra recorded with even the simplest of pulse schemes: an HMQC case study. Journal of Biomolecular NMR, 2019, 73, 423-427.	2.8	6
218	Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2203172119.	7.1	6
219	Measuring Diffusion Constants of Invisible Protein Conformers by Tripleâ€Quantum 1 H CPMG Relaxation Dispersion. Angewandte Chemie, 2018, 130, 17019-17022.	2.0	5
220	Analyzing multi-step ligand binding reactions for oligomeric proteins by NMR: Theoretical and computational considerations. Journal of Magnetic Resonance, 2020, 318, 106802.	2.1	4
221	Probing Cooperativity of Nâ€Terminal Domain Orientations in the p97 Molecular Machine: Synergy Between NMR Spectroscopy and Cryoâ€EM. Angewandte Chemie - International Edition, 2020, 59, 22423-22426.	13.8	4
222	Separating Dipolar and Chemical Exchange Magnetization Transfer Processes in ¹ Hâ€CEST. Angewandte Chemie, 2017, 129, 6218-6221.	2.0	2
223	A Methylâ€TROSYâ€Based ¹ H Relaxation Dispersion Experiment for Studies of Conformational Exchange in High Molecular Weight Proteins. Angewandte Chemie, 2019, 131, 6316-6320.	2.0	2
224	Studying Protein-Excited States by Nmr. Scientific World Journal, The, 2002, 2, 45-46.	2.1	1
225	The evolution of solution state NMR pulse sequences through the â€~eyes' of triple-resonance spectroscopy. Journal of Magnetic Resonance, 2019, 306, 48-54.	2.1	1
226	Probing Cooperativity of Nâ€Terminal Domain Orientations in the p97 Molecular Machine: Synergy Between NMR Spectroscopy and Cryoâ€EM. Angewandte Chemie, 2020, 132, 22609-22612.	2.0	1
227	A magnet moment silenced: A tribute to my friend and mentor Alex D. Bain. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2016, 45A, e21420.	0.5	0
228	Selected topics in solution-phase biomolecular NMR spectroscopy. Journal of Magnetic Resonance, 2017, 278, 141.	2.1	0
229	Biophysics in Canada. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1479-1482.	2.3	0
230	A life writ large: Chris Dobson 1949–2019. Journal of Magnetic Resonance, 2021, 326, 106947.	2.1	0
231	A Novel Non-Competitive Chemical Proteasome Inhibitor Displays Preclinical Activity in Myeloma and Leukemia Blood, 2008, 112, 1711-1711.	1.4	0
232	FV-162 Is a Novel Orally Bioavailable Proteasome Inhibitor With Improved Pharmacokinetics That Displays Preclinical Efficacy In Vitro and In Vivo. Blood, 2013, 122, 1988-1988.	1.4	0
233	Revisiting dipolar relaxation of a homonuclear spin pair in the presence of a radio frequency field: a tutorial. Journal of Magnetic Resonance Open, 2022, , 100065.	1.1	0