David E Keyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4336248/publications.pdf

Version: 2024-02-01

		304368	182168	
150	3,198	22	51	
papers	citations	h-index	g-index	
				ı
156	156	156	2110	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	The International Exascale Software Project roadmap. International Journal of High Performance Computing Applications, 2011, 25, 3-60.	2.4	495
2	Multiphysics simulations. International Journal of High Performance Computing Applications, 2013, 27, 4-83.	2.4	244
3	Convergence Analysis of Pseudo-Transient Continuation. SIAM Journal on Numerical Analysis, 1998, 35, 508-523.	1.1	218
4	Nonlinearly Preconditioned Inexact Newton Algorithms. SIAM Journal of Scientific Computing, 2002, 24, 183-200.	1.3	161
5	A Comparison of Domain Decomposition Techniques for Elliptic Partial Differential Equations and their Parallel Implementation. SIAM Journal on Scientific and Statistical Computing, 1987, 8, s166-s202.	1.5	157
6	High-performance parallel implicit CFD. Parallel Computing, 2001, 27, 337-362.	1.3	137
7	Parallel NewtonKrylov-Schwarz Algorithms for the Transonic Full Potential Equation. SIAM Journal of Scientific Computing, 1998, 19, 246-265.	1.3	112
8	Pseudotransient Continuation and Differential-Algebraic Equations. SIAM Journal of Scientific Computing, 2003, 25, 553-569.	1.3	85
9	Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD. International Journal of High Performance Computing Applications, 2000, 14, 102-136.	2.4	58
10	Towards Polyalgorithmic Linear System Solvers for Nonlinear Elliptic Problems. SIAM Journal of Scientific Computing, 1994, 15, 681-703.	1.3	57
11	Multicore-Optimized Wavefront Diamond Blocking for Optimizing Stencil Updates. SIAM Journal of Scientific Computing, 2015, 37, C439-C464.	1.3	57
12	Non-linear additive Schwarz preconditioners and application in computational fluid dynamics. International Journal for Numerical Methods in Fluids, 2002, 40, 1463-1470.	0.9	55
13	Field-Split Preconditioned Inexact Newton Algorithms. SIAM Journal of Scientific Computing, 2015, 37, A1388-A1409.	1.3	55
14	ExaGeoStat: A High Performance Unified Software for Geostatistics on Manycore Systems. IEEE Transactions on Parallel and Distributed Systems, 2018, 29, 2771-2784.	4.0	44
15	Complexity of Parallel Implementation of Domain Decomposition Techniques for Elliptic Partial Differential Equations. SIAM Journal on Scientific and Statistical Computing, 1988, 9, 312-326.	1.5	38
16	Batched QR and SVD algorithms on GPUs with applications in hierarchical matrix compression. Parallel Computing, 2018, 74, 19-33.	1.3	38
17	Fast parallel multidimensional FFT using advanced MPI. Journal of Parallel and Distributed Computing, 2019, 128, 137-150.	2.7	37
18	A comparison of some domain decomposition and ILU preconditioned iterative methods for nonsymmetric elliptic problems. Numerical Linear Algebra With Applications, 1994, 1, 477-504.	0.9	31

#	Article	IF	CITATIONS
19	KBLAS. ACM Transactions on Mathematical Software, 2016, 42, 1-31.	1.6	28
20	Exaflop/s: The why and the how. Comptes Rendus - Mecanique, 2011, 339, 70-77.	2.1	26
21	Domain decomposition methods for the parallel computation of reacting flows. Computer Physics Communications, 1989, 53, 181-200.	3.0	25
22	Domain decomposition on parallel computers. IMPACT of Computing in Science and Engineering, 1989, 1, 421-439.	0.8	25
23	Aerodynamic applications of Newton- Krylov-Schwarz solvers. , 1995, , 1-20.		25
24	Domain decomposition methods in computational fluid dynamics. International Journal for Numerical Methods in Fluids, 1992, 14, 147-165.	0.9	24
25	Tile Low Rank Cholesky Factorization for Climate/Weather Modeling Applications on Manycore Architectures. Lecture Notes in Computer Science, 2017, , 22-40.	1.0	24
26	Extreme-Scale Task-Based Cholesky Factorization Toward Climate and Weather Prediction Applications. , 2020, , .		24
27	Domain Decomposition with Local Mesh Refinement. SIAM Journal on Scientific and Statistical Computing, 1992, 13, 967-993.	1.5	22
28	Likelihood approximation with hierarchical matrices for large spatial datasets. Computational Statistics and Data Analysis, 2019, 137, 115-132.	0.7	22
29	SBP–SAT finite difference discretization of acoustic wave equations on staggered block-wise uniform grids. Journal of Computational and Applied Mathematics, 2019, 348, 421-444.	1.1	22
30	Reconstructing parameters of the FitzHugh–Nagumo system from boundary potential measurements. Journal of Computational Neuroscience, 2007, 23, 251-264.	0.6	21
31	Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities. Journal of Computational and Graphical Statistics, 2018, 27, 268-277.	0.9	21
32	Multidimensional Intratile Parallelization for Memory-Starved Stencil Computations. ACM Transactions on Parallel Computing, 2017, 4, 1-32.	1.2	20
33	Combining finite element and finite difference methods for isotropic elastic wave simulations in an energy-conserving manner. Journal of Computational Physics, 2019, 378, 665-685.	1.9	20
34	On the robustness and performance of entropy stable collocated discontinuous Galerkin methods. Journal of Computational Physics, 2021, 426, 109891.	1.9	19
35	Exploiting Data Sparsity for Large-Scale Matrix Computations. Lecture Notes in Computer Science, 2018, , 721-734.	1.0	19
36	A Note on Adaptive Nonlinear Preconditioning Techniques. SIAM Journal of Scientific Computing, 2018, 40, A1171-A1186.	1.3	18

#	Article	IF	Citations
37	Fully implicit hybrid two-level domain decomposition algorithms for two-phase flows in porous media on 3D unstructured grids. Journal of Computational Physics, 2020, 409, 109312.	1.9	18
38	Hierarchical algorithms on hierarchical architectures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190055.	1.6	18
39	Parallel Approximation of the Maximum Likelihood Estimation for the Prediction of Large-Scale Geostatistics Simulations. , 2018, , .		16
40	Hierarchical Matrix Operations on GPUs. ACM Transactions on Mathematical Software, 2019, 45, 1-28.	1.6	16
41	Composing Algorithmic Skeletons to Express High-Performance Scientific Applications. , 2015, , .		15
42	Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering. SIAM Journal of Scientific Computing, 2019, 41, C245-C268.	1.3	15
43	Accelerating Geostatistical Modeling and Prediction With Mixed-Precision Computations: A High-Productivity Approach With PaRSEC. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 964-976.	4.0	14
44	Competition on Spatial Statistics for Large Datasets. Journal of Agricultural, Biological, and Environmental Statistics, 2021, 26, 580-595.	0.7	14
45	A High Performance QDWH-SVD Solver Using Hardware Accelerators. ACM Transactions on Mathematical Software, 2017, 43, 1-25.	1.6	13
46	Convergence rate estimate for a domain decomposition method. Numerische Mathematik, 1992, 61, 153-169.	0.9	12
47	A parallel domain decomposition-based implicit method for the Cahn–Hilliard–Cook phase-field equation in 3D. Journal of Computational Physics, 2015, 285, 55-70.	1.9	12
48	Efficiency of High Order Spectral Element Methods on Petascale Architectures. Lecture Notes in Computer Science, 2016, , 449-466.	1.0	12
49	Hierarchical-block conditioning approximations for high-dimensional multivariate normal probabilities. Statistics and Computing, 2019, 29, 585-598.	0.8	12
50	Geostatistical Modeling and Prediction Using Mixed Precision Tile Cholesky Factorization., 2019,,.		12
51	Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools. , 2019, , .		12
52	Smooth and robust solutions for Dirichlet boundary control of fluid–solid conjugate heat transfer problems. Journal of Computational Physics, 2015, 281, 759-786.	1.9	11
53	Efficient Sphere Detector Algorithm for Massive MIMO Using GPU Hardware Accelerator. Procedia Computer Science, 2016, 80, 2169-2180.	1.2	11
54	Optimizations of Unstructured Aerodynamics Computations for Many-core Architectures. IEEE Transactions on Parallel and Distributed Systems, 2018, 29, 2317-2332.	4.0	11

#	Article	IF	Citations
55	Meeting the real-time challenges of ground-based telescopes using low-rank matrix computations. , 2021, , .		11
56	Pipelining Computational Stages of the Tomographic Reconstructor for Multi-Object Adaptive Optics on a Multi-GPU System. , 2014, , .		10
57	Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern Parallel Systems., 2015,,.		10
58	Convergence Analysis for the Multiplicative Schwarz Preconditioned Inexact Newton Algorithm. SIAM Journal on Numerical Analysis, 2016, 54, 3145-3166.	1.1	10
59	Accelerated Dimension-Independent Adaptive Metropolis. SIAM Journal of Scientific Computing, 2016, 38, S539-S565.	1.3	10
60	Fast multipole preconditioners for sparse matrices arising from elliptic equations. Computing and Visualization in Science, 2018, 18, 213-229.	1.2	10
61	Asynchronous Task-Based Polar Decomposition on Single Node Manycore Architectures. IEEE Transactions on Parallel and Distributed Systems, 2018, 29, 312-323.	4.0	10
62	Randomized GPU Algorithms for the Construction of Hierarchical Matrices from Matrix-Vector Operations. SIAM Journal of Scientific Computing, 2019, 41, C339-C366.	1.3	10
63	Nonlinear Preconditioning Strategies for Two-Phase Flows in Porous Media Discretized by a Fully Implicit Discontinuous Galerkin Method. SIAM Journal of Scientific Computing, 2021, 43, S317-S344.	1.3	10
64	Parallel Performance of Domain-Decomposed Preconditioned Krylov Methods for PDEswith Locally Uniform Refinement. SIAM Journal on Scientific and Statistical Computing, 1992, 13, 128-145.	1.5	9
65	Redesigning Triangular Dense Matrix Computations on GPUs. Lecture Notes in Computer Science, 2016, , 477-489.	1.0	9
66	Unstructured computational aerodynamics on many integrated core architecture. Parallel Computing, 2016, 59, 97-118.	1.3	9
67	An explicit marching-on-in-time scheme for solving the time domain Kirchhoff integral equation. Journal of the Acoustical Society of America, 2019, 146, 2068-2079.	0.5	9
68	Tucker Tensor Analysis of Mat \tilde{A} @rn Functions in Spatial Statistics. Computational Methods in Applied Mathematics, 2019, 19, 101-122.	0.4	9
69	HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification. MethodsX, 2020, 7, 100600.	0.7	9
70	Hierarchical Matrix Approximations of Hessians Arising in Inverse Problems Governed by PDEs. SIAM Journal of Scientific Computing, 2020, 42, A3397-A3426.	1.3	9
71	Tile Low-Rank GEMM Using Batched Operations on GPUs. Lecture Notes in Computer Science, 2018, , 811-825.	1.0	9
72	Prospects for CFD on Petaflops Systems. The IMA Volumes in Mathematics and Its Applications, 2000, , 247-277.	0.5	9

#	Article	lF	CITATIONS
73	Fully Implicit Two-phase Reservoir Simulation with the Additive Schwarz Preconditioned Inexact Newton Method., 2013,,.		8
74	High Performance Multi-GPU SpMV for Multi-component PDE-Based Applications. Lecture Notes in Computer Science, 2015, , 601-612.	1.0	8
75	Performance optimization of Sparse Matrixâ€Vector Multiplication for multiâ€component PDEâ€based applications using GPUs. Concurrency Computation Practice and Experience, 2016, 28, 3447-3465.	1.4	8
76	Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on GPUs. ACM Transactions on Mathematical Software, 2019, 45, 1-28.	1.6	8
77	A Multilayer Nonlinear Elimination Preconditioned Inexact Newton Method for Steady-State Incompressible Flow Problems in Three Dimensions. SIAM Journal of Scientific Computing, 2020, 42, B1404-B1428.	1.3	8
78	Solution of the 3D density-driven groundwater flow problem with uncertain porosity and permeability. GEM - International Journal on Geomathematics, 2020, 11, 1.	0.7	8
79	High Performance Multivariate Geospatial Statistics on Manycore Systems. IEEE Transactions on Parallel and Distributed Systems, 2021, 32, 2719-2733.	4.0	8
80	A performance model for the communication in fast multipole methods on high-performance computing platforms. International Journal of High Performance Computing Applications, 2016, 30, 423-437.	2.4	7
81	Real-Time Massively Distributed Multi-object Adaptive Optics Simulations for the European Extremely Large Telescope. , 2018, , .		7
82	Performance study of sustained petascale direct numerical simulation on Cray XC40 systems. Concurrency Computation Practice and Experience, 2020, 32, e5725.	1.4	7
83	Four Horizons for Enhancing the Performance of Parallel Simulations Based on Partial Differential Equations. Lecture Notes in Computer Science, 2000, , 1-17.	1.0	7
84	Solving Acoustic Boundary Integral Equations Using High Performance Tile Low-Rank LU Factorization. Lecture Notes in Computer Science, 2020, , 209-229.	1.0	7
85	Systematic Approach in Optimizing Numerical Memory-Bound Kernels on GPU. Lecture Notes in Computer Science, 2013, , 207-216.	1.0	7
86	Asynchronous computations for solving the acoustic wave propagation equation. International Journal of High Performance Computing Applications, 2020, 34, 377-393.	2.4	7
87	Optimization of an Electromagnetics Code with Multicore Wavefront Diamond Blocking and Multi-dimensional Intra-Tile Parallelization. , $2016, , .$		6
88	High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics. SPE Journal, 2016, 21, 0853-0863.	1.7	6
89	Mixed-Precision Tomographic Reconstructor Computations on Hardware Accelerators. , 2019, , .		6
90	Leveraging PaRSEC Runtime Support to Tackle Challenging 3D Data-Sparse Matrix Problems. , 2021, , .		6

#	Article	IF	CITATIONS
91	Communication Reducing Algorithms for Distributed Hierarchical N-Body Problems with Boundary Distributions. Lecture Notes in Computer Science, 2017, , 79-96.	1.0	6
92	Hybrid Programming Model for Implicit PDE Simulations on Multicore Architectures. Lecture Notes in Computer Science, 2011, , 12-21.	1.0	6
93	PROSPECTS FOR CFD ON PETAFLOPS SYSTEMS. , 1998, , 1079-1096.		6
94	Performance Evaluation of Computation and Communication Kernels of the Fast Multipole Method on Intel Manycore Architecture. Lecture Notes in Computer Science, 2017, , 553-564.	1.0	5
95	A scalable community detection algorithm for large graphs using stochastic block models. Intelligent Data Analysis, 2017, 21, 1463-1485.	0.4	5
96	Accelerated Cyclic Reduction: A distributed-memory fast solver for structured linear systems. Parallel Computing, 2018, 74, 65-83.	1.3	5
97	Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients. Journal of Computational and Applied Mathematics, 2018, 344, 760-781.	1.1	5
98	Hierarchical matrix approximations for space-fractional diffusion equations. Computer Methods in Applied Mechanics and Engineering, 2020, 369, 113191.	3.4	5
99	Explicit coupling of acoustic and elastic wave propagation in finite-difference simulations. Geophysics, 2020, 85, T293-T308.	1.4	5
100	Scalable soft real-time supervisor for tomographic AO. , 2018, , .		5
100	Scalable soft real-time supervisor for tomographic AO. , 2018, , . Maximizing I/O Bandwidth for Reverse Time Migration on Heterogeneous Large-Scale Systems. Lecture Notes in Computer Science, 2020, , 263-278.	1.0	5
	Maximizing I/O Bandwidth for Reverse Time Migration on Heterogeneous Large-Scale Systems. Lecture	1.0	
101	Maximizing I/O Bandwidth for Reverse Time Migration on Heterogeneous Large-Scale Systems. Lecture Notes in Computer Science, 2020, , 263-278.	1.0	5
101	Maximizing I/O Bandwidth for Reverse Time Migration on Heterogeneous Large-Scale Systems. Lecture Notes in Computer Science, 2020, , 263-278. A Framework to Exploit Data Sparsity in Tile Low-Rank Cholesky Factorization. , 2022, , . A comparison of PETSc library and HPF implementations of an archetypal PDS computation. Advances		5
101 102 103	Maximizing I/O Bandwidth for Reverse Time Migration on Heterogeneous Large-Scale Systems. Lecture Notes in Computer Science, 2020, , 263-278. A Framework to Exploit Data Sparsity in Tile Low-Rank Cholesky Factorization. , 2022, , . A comparison of PETSc library and HPF implementations of an archetypal PDS computation. Advances in Engineering Software, 1998, 29, 415-423. Moving grids for magnetic reconnection via Newton–Krylov methods. Computer Physics	1.8	5 5 4
101 102 103	Maximizing I/O Bandwidth for Reverse Time Migration on Heterogeneous Large-Scale Systems. Lecture Notes in Computer Science, 2020, , 263-278. A Framework to Exploit Data Sparsity in Tile Low-Rank Cholesky Factorization. , 2022, , . A comparison of PETSc library and HPF implementations of an archetypal PDS computation. Advances in Engineering Software, 1998, 29, 415-423. Moving grids for magnetic reconnection via Newton–Krylov methods. Computer Physics Communications, 2011, 182, 173-176. Numerical simulation of four-field extended magnetohydrodynamics in dynamically adaptive curvilinear coordinates via Newton–Krylov—Schwarz. Journal of Computational Physics, 2012, 231,	1.8	5 5 4
101 102 103 104	Maximizing I/O Bandwidth for Reverse Time Migration on Heterogeneous Large-Scale Systems. Lecture Notes in Computer Science, 2020, , 263-278. A Framework to Exploit Data Sparsity in Tile Low-Rank Cholesky Factorization. , 2022, , . A comparison of PETSc library and HPF implementations of an archetypal PDS computation. Advances in Engineering Software, 1998, 29, 415-423. Moving grids for magnetic reconnection via Newton–Krylov methods. Computer Physics Communications, 2011, 182, 173-176. Numerical simulation of four-field extended magnetohydrodynamics in dynamically adaptive curvilinear coordinates via Newton–Krylov–Schwarz. Journal of Computational Physics, 2012, 231, 5822-5853. Optimizing the performance of streaming numerical kernels on the IBM Blue Gene/P PowerPC 450	1.8 3.0 1.9	5 5 4 4

#	Article	IF	CITATIONS
109	Parallel space-time likelihood optimization for air pollution prediction on large-scale systems. , 2022, , .		4
110	Domain decomposition techniques for the parallel solution of nonsymmetric systems of elliptic boundary value problems. Applied Numerical Mathematics, 1990, 6, 281-301.	1.2	3
111	Multiplicative Algorithms for Constrained Non-negative Matrix Factorization. , $2012, \ldots$		3
112	On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients. , 2016 , , .		3
113	Application of High Performance Asynchronous Acoustic Wave Equation Stencil Solver into a Land Survey., 2019,,.		3
114	Exploiting low-rank covariance structures for computing high-dimensional normal and Student-t probabilities. Statistics and Computing, 2021, 31, 1.	0.8	3
115	Approximate Error Bounds on Solutions of Nonlinearly Preconditioned PDEs. SIAM Journal of Scientific Computing, 2021, 43, A2526-A2554.	1.3	3
116	High Performance Polar Decomposition on Distributed Memory Systems. Lecture Notes in Computer Science, 2016, , 605-616.	1.0	3
117	Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation. Lecture Notes in Computational Science and Engineering, 2017, , 267-286.	0.1	3
118	mpi4py-fft: Parallel Fast Fourier Transforms with MPI for Python. Journal of Open Source Software, 2019, 4, 1340.	2.0	3
119	Nonuniform 3D finite-difference elastic wave simulation on staggered grids. Geophysics, 2022, 87, T347-T361.	1.4	3
120	Space-Fractional Diffusion with Variable Order and Diffusivity: Discretization and Direct Solution Strategies. Communications on Applied Mathematics and Computation, 2022, 4, 1416-1440.	0.7	3
121	Performance Assessment of Hybrid Parallelism for Large-Scale Reservoir Simulation on Multi- and Many-core Architectures. , $2018, \ldots$		2
122	Abstraction Layer For Standardizing APIs of Task-Based Engines. IEEE Transactions on Parallel and Distributed Systems, 2020, 31, 2482-2495.	4.0	2
123	A scheduling policy to save 10% of communication time in parallel fast Fourier transform. Concurrency Computation Practice and Experience, 2023, 35, e6508.	1.4	2
124	Trends in Algorithms for Nonuniform Applications on Hierarchical Distributed Architectures. , 2000, , 103-137.		2
125	NKS Method for the Implicit Solution of a Coupled Allen-Cahn/Cahn-Hilliard System. Lecture Notes in Computational Science and Engineering, 2014, , 819-827.	0.1	2
126	Predictive learn and apply: MAVIS application - apply. , 2020, , .		2

#	Article	IF	Citations
127	High-performance 3D Unstructured Mesh Deformation Using Rank Structured Matrix Computations. ACM Transactions on Parallel Computing, 2022, 9, 1-23.	1.2	2
128	H2Opus: a distributed-memory multi-GPU software package for non-local operators. Advances in Computational Mathematics, 2022, 48, 1.	0.8	2
129	Performance analysis of relaxation Runge–Kutta methods. International Journal of High Performance Computing Applications, 2022, 36, 524-542.	2.4	2
130	A Nonlinear Elimination Preconditioned Inexact Newton Algorithm. SIAM Journal of Scientific Computing, 2022, 44, A1579-A1605.	1.3	2
131	Application of PDSLin to the magnetic reconnection problem. Computational Science & Discovery, 2013, 6, 014002.	1.5	1
132	Large-scale parameter extraction in electrocardiology models through Born approximation. Inverse Problems, 2013, 29, 015001.	1.0	1
133	Simulation of Turbulent Flows Using a Fully Discrete Explicit <i>hp</i> -nonconforming Entropy Stable Solver of Any Order on Unstructured Grids., 2021,,.		1
134	The Arab world prepares the exascale workforce. Communications of the ACM, 2021, 64, 82-87.	3.3	1
135	Sum of Kronecker products representation and its Cholesky factorization for spatial covariance matrices from large grids. Computational Statistics and Data Analysis, 2021, 157, 107165.	0.7	1
136	An O(N) algorithm for computing expectation of N-dimensional truncated multi-variate normal distribution I: fundamentals. Advances in Computational Mathematics, 2021, 47, 1.	0.8	1
137	Parallel Implicit Solution of Diffusion-limited Radiation Transport. , 2007, , 579-586.		1
138	PDE-based Parameter Reconstruction through Schur and Schwarz Decompositions. Lecture Notes in Computational Science and Engineering, 2008, , 543-550.	0.1	1
139	Efficient Supervision Strategy for Tomographic AO Systems on E-ELT. , 2017, , .		1
140	tlrmvnmvt : Computing High-Dimensional Multivariate Normal and Student- <mml:math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/Math/ML"> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:math> Probabilities with Low-Rank Methods in <i>R</i> . Journal of Statistical Software, 2022, 101, .	1.8	1
141	Scalable solver software. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 1026401-1026402.	0.2	0
142	Hierarchical Programming Models for Exascale Computing—Potential and Challenges. , 2010, , .		0
143	â,,∢â€matrix techniques for approximating large covariance matrices and estimating its parameters. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 731-732.	0.2	0
144	Efficient Simulations for Contamination of Groundwater Aquifers under Uncertainties. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900023.	0.2	0

#	ARTICLE	IF	CITATIONS
145	Leveraging Task-Based Polar Decomposition Using PARSEC on Massively Parallel Systems. , 2019, , .		0
146	Topic 14+16: High-Performance and Scientific Applications and Extreme-Scale Computing. Lecture Notes in Computer Science, 2013, , 737-738.	1.0	0
147	Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow. Lecture Notes in Computational Science and Engineering, 2017, , 227-235.	0.1	O
148	A Nonlinear Elimination Preconditioned Inexact Newton Algorithm for Steady State Incompressible Flow Problems on 3D Unstructured Meshes. Lecture Notes in Computational Science and Engineering, 2020, , 441-449.	0.1	0
149	Implications of Reduced Communication Precision in a Collocated Discontinuous Galerkin Finite Element Framework. , 2021, , .		0
150	Parallel Approximations of the Tukey g-and-h Likelihoods and Predictions for Non-Gaussian Geostatistics. , 2022, , .		0