
John Grainger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4336188/publications.pdf Version: 2024-02-01

IOHN CRAINCER

#	Article	IF	CITATIONS
1	Integrated miRNA/cytokine/chemokine profiling reveals severity-associated step changes and principal correlates of fatality in COVID-19. IScience, 2022, 25, 103672.	1.9	25
2	Do Concentration or Activity of Selenoproteins Change in Acute Stroke Patients? A Systematic Review and Meta-Analyses. Cerebrovascular Diseases, 2022, 51, 461-472.	0.8	1
3	COVID-19 therapeutics: Challenges and directions for the future. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119893119.	3.3	92
4	A Single-Arm, Long-Term Efficacy and Safety Study of Subcutaneous Romiplostim in Children with Immune Thrombocytopenia. Blood Advances, 2022, , .	2.5	1
5	A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells. Clinical and Experimental Immunology, 2021, 203, 458-471.	1.1	7
6	Hematopoietic stem and progenitor cells are present in healthy gingiva tissue. Journal of Experimental Medicine, 2021, 218, .	4.2	11
7	P058 Persistence of neutrophil abnormalities in COVID-19 convalescence. Rheumatology, 2021, 60, .	0.9	0
8	Alterations in T and B cell function persist in convalescent COVID-19 patients. Med, 2021, 2, 720-735.e4.	2.2	87
9	The Helminth Parasite Heligmosomoides polygyrus Attenuates EAE in an IL-4Rα-Dependent Manner. Frontiers in Immunology, 2020, 11, 1830.	2.2	16
10	Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Science Immunology, 2020, 5, .	5.6	198
11	Romiplostim treatment for children with immune thrombocytopenia: Results of an integrated database of five clinical trials. Pediatric Blood and Cancer, 2020, 67, e28630.	0.8	6
12	Infant Alveolar Macrophages Are Unable to Effectively Contain Mycobacterium tuberculosis. Frontiers in Immunology, 2020, 11, 486.	2.2	15
13	Chronic Inflammation in Response to Injury: Retention of Myeloid Cells in Injured Tissue Is Driven by Myeloid Cell Intrinsic Factors. Journal of Investigative Dermatology, 2019, 139, 1583-1592.	0.3	12
14	i101â \in fOn training the immune system by long-range signals. Rheumatology, 2018, 57, .	0.9	0
15	Amphiregulin-producing ^ĵ aĵ´T cells are vital for safeguarding oral barrier immune homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10738-10743.	3.3	73
16	Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. Journal of Experimental Medicine, 2018, 215, 1507-1518.	4.2	272
17	Systemic instruction of cell-mediated immunity by the intestinal microbiome. F1000Research, 2018, 7, 1910.	0.8	12
18	Macrophages in gastrointestinal homeostasis and inflammation. Pflugers Archiv European Journal of Physiology, 2017, 469, 527-539.	1.3	129

John Grainger

#	Article	IF	CITATIONS
19	Cultivation of Heligmosomoides Polygyrus: An Immunomodulatory Nematode Parasite and its Secreted Products. Journal of Visualized Experiments, 2015, , e52412.	0.2	67
20	Bone-Marrow-Resident NK Cells Prime Monocytes for Regulatory Function during Infection. Immunity, 2015, 42, 1130-1142.	6.6	199
21	Innate and adaptive type 2 immune cell responses in genetically controlled resistance to intestinal helminth infection. Immunology and Cell Biology, 2014, 92, 436-448.	1.0	128
22	Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E465-73.	3.3	66
23	Neutrophils worm their way into macrophage long-term memory. Nature Immunology, 2014, 15, 902-904.	7.0	5
24	Contextual functions of antigenâ€presenting cells in the gastrointestinal tract. Immunological Reviews, 2014, 259, 75-87.	2.8	30
25	Intraluminal Containment of Commensal Outgrowth in the Gut during Infection-Induced Dysbiosis. Cell Host and Microbe, 2013, 14, 318-328.	5.1	142
26	Minimal Differentiation of Classical Monocytes as They Survey Steady-State Tissues and Transport Antigen to Lymph Nodes. Immunity, 2013, 39, 599-610.	6.6	656
27	Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nature Medicine, 2013, 19, 713-721.	15.2	239
28	Retinoic acid controls the homeostasis of pre-cDC–derived splenic and intestinal dendritic cells. Journal of Experimental Medicine, 2013, 210, 1961-1976.	4.2	120
29	Mucus Coat, a Dress Code for Tolerance. Science, 2013, 342, 432-433.	6.0	5
30	The Cytokines Interleukin 27 and Interferon-Î ³ Promote Distinct Treg Cell Populations Required to Limit Infection-Induced Pathology. Immunity, 2012, 37, 511-523.	6.6	340
31	Immune modulation and modulators in Heligmosomoides polygyrus infection. Experimental Parasitology, 2012, 132, 76-89.	0.5	105
32	The Transcription Factors Thpok and LRF Are Necessary and Partly Redundant for T Helper Cell Differentiation. Immunity, 2012, 37, 622-633.	6.6	39
33	Regulatory role of suppressive motifs from commensal DNA. Mucosal Immunology, 2012, 5, 623-634.	2.7	64
34	Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nature Immunology, 2011, 12, 247-254.	7.0	522
35	Essential Role for Retinoic Acid in the Promotion of CD4+ T Cell Effector Responses via Retinoic Acid Receptor Alpha. Immunity, 2011, 34, 435-447.	6.6	330
36	The Role of Retinoic Acid in Tolerance and Immunity. Immunity, 2011, 35, 13-22.	6.6	450

JOHN GRAINGER

#	Article	IF	CITATIONS
37	Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of Venom Allergen-Like (VAL) proteins. Journal of Proteomics, 2011, 74, 1573-1594.	1.2	136
38	Heligmosomoides polygyrus Elicits a Dominant Nonprotective Antibody Response Directed against Restricted Glycan and Peptide Epitopes. Journal of Immunology, 2011, 187, 4764-4777.	0.4	46
39	GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. Journal of Clinical Investigation, 2011, 121, 4503-4515.	3.9	462
40	daf-7-related TGF-Î ² homologues from Trichostrongyloid nematodes show contrasting life-cycle expression patterns. Parasitology, 2010, 137, 159-171.	0.7	54
41	Generation of pathogenic TH17 cells in the absence of TGF-Î ² signalling. Nature, 2010, 467, 967-971.	13.7	1,253
42	Microbe–dendritic cell dialog controls regulatory T ell fate. Immunological Reviews, 2010, 234, 305-316.	2.8	38
43	Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-Î ² pathway. Journal of Experimental Medicine, 2010, 207, 2331-2341.	4.2	437
44	Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. Journal of Cell Biology, 2010, 191, i3-i3.	2.3	0
45	Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity. Molecular and Biochemical Parasitology, 2009, 167, 1-11.	0.5	627
46	Cooperation between Different Forms of the Human Papillomavirus Type 1 E4 Protein To Block Cell Cycle Progression and Cellular DNA Synthesis. Journal of Virology, 2004, 78, 13920-13933.	1.5	32