List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4335870/publications.pdf Version: 2024-02-01

		41258	20307
126	19,715	49	116
papers	citations	h-index	g-index
143	143	143	20515
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Diversity of transcriptomic microglial phenotypes in aging and Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 360-376.	0.4	46
2	Accumulation of C-terminal cleaved tau is distinctly associated with cognitive deficits, synaptic plasticity impairment, and neurodegeneration in aged mice. GeroScience, 2022, 44, 173-194.	2.1	6
3	Impact of COVIDâ€19 on the Onset and Progression of Alzheimer's Disease and Related Dementias: A Roadmap for Future Research. Alzheimer's and Dementia, 2022, 18, 1038-1046.	0.4	34
4	Low-Dose Delta-9-Tetrahydrocannabinol as Beneficial Treatment for Aged APP/PS1 Mice. International Journal of Molecular Sciences, 2022, 23, 2757.	1.8	10
5	The Memory Benefit to Aged APP/PS1 Mice from Long-Term Intranasal Treatment of Low-Dose THC. International Journal of Molecular Sciences, 2022, 23, 4253.	1.8	4
6	Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-β Associated Neurodegenerative Pathways and Glial Signatures in a Mouse Model of Alzheimer's Disease: A Targeted Transcriptome Analysis. Frontiers in Immunology, 2021, 12, 628156.	2.2	6
7	Toward Development of Neuron Specific Transduction After Systemic Delivery of Viral Vectors. Frontiers in Neurology, 2021, 12, 685802.	1.1	13
8	Active immunization with tau epitope in a mouse model of tauopathy induced strong antibody response together with improvement in short memory and pSer396-tau pathology. Neurobiology of Disease, 2020, 134, 104636.	2.1	15
9	An Immunomodulatory Therapeutic Vaccine Targeting Oligomeric Amyloid-β. Journal of Alzheimer's Disease, 2020, 77, 1639-1653.	1.2	8
10	CCL2 Overexpression in the Brain Promotes Glial Activation and Accelerates Tau Pathology in a Mouse Model of Tauopathy. Frontiers in Immunology, 2020, 11, 997.	2.2	54
11	Arginase 1 Insufficiency Precipitates Amyloid-β Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis. Frontiers in Immunology, 2020, 11, 582998.	2.2	15
12	Spermidine/spermine-N1-acetyltransferase ablation impacts tauopathy-induced polyamine stress response. Alzheimer's Research and Therapy, 2019, 11, 58.	3.0	29
13	CNS-Wide over Expression of Fractalkine Improves Cognitive Functioning in a Tauopathy Model. Journal of NeuroImmune Pharmacology, 2019, 14, 312-325.	2.1	25
14	P3â€∎76: AGE AS A PREDICTOR OF DIFFERENT PHYSIOLOGICAL FORMS OF TAU. Alzheimer's and Dementia, 2018 14, P1135.	^{3,} 0.4	0
15	Disruption of normal circadian clock function in a mouse model of tauopathy. Experimental Neurology, 2017, 294, 58-67.	2.0	64
16	Unbiased estimation of cell number using the automatic optical fractionator. Journal of Chemical Neuroanatomy, 2017, 80, A1-A8.	1.0	24
17	Oligomeric tau-targeted immunotherapy in Tg4510 mice. Alzheimer's Research and Therapy, 2017, 9, 46.	3.0	13
18	Metabolic changes over the course of aging in a mouse model ofÂtauÂdeposition. Neurobiology of Aging, 2016, 44, 62-73.	1.5	33

#	Article	IF	CITATIONS
19	Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking. Journal of Immunological Methods, 2016, 432, 51-56.	0.6	6
20	Tau-Directed Immunotherapy: A Promising Strategy for Treating Alzheimer's Disease and Other Tauopathies. Journal of NeuroImmune Pharmacology, 2016, 11, 9-25.	2.1	45
21	Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain. Methods in Molecular Biology, 2016, 1382, 285-295.	0.4	6
22	P3-007: Characterization of full length and c-terminal truncated tau pathological progression with age in wild type mice. , 2015, 11, P621-P622.		0
23	Sustained Arginase 1 Expression Modulates Pathological Tau Deposits in a Mouse Model of Tauopathy. Journal of Neuroscience, 2015, 35, 14842-14860.	1.7	37
24	Dendritic and Langerhans cells respond to AÎ ² peptides differently: implication for AD immunotherapy. Oncotarget, 2015, 6, 35443-35457.	0.8	3
25	Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis. Journal of Neuroinflammation, 2014, 11, 152.	3.1	35
26	Effects of Repetitive Exposure to Anesthetics and Analgesics in the Tg2576 Mouse Alzheimer's Model. Neurotoxicity Research, 2014, 26, 414-421.	1.3	14
27	Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behavioural Brain Research, 2014, 271, 79-88.	1.2	59
28	Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimer's Research and Therapy, 2014, 6, 12.	3.0	105
29	Intraventricular Human Immunoglobulin Distributes Extensively but Fails to Modify Amyloid in a Mouse Model of Amyloid Deposition. Current Alzheimer Research, 2014, 11, 664-671.	0.7	5
30	Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain. Journal of Neuroinflammation, 2013, 10, 86.	3.1	78
31	Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiology of Aging, 2013, 34, 1610-1620.	1.5	105
32	Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiology of Aging, 2013, 34, 1540-1548.	1.5	89
33	Review: Experimental manipulations of microglia in mouse models of <scp>A</scp> lzheimer's pathology: activation reduces amyloid but hastens tau pathology. Neuropathology and Applied Neurobiology, 2013, 39, 69-85.	1.8	52
34	Amyloid Oligomers Exacerbate Tau Pathology in a Mouse Model of Tauopathy. Neurodegenerative Diseases, 2013, 11, 165-181.	0.8	6,857
35	Intracranial Injection of AAV Expressing NEP but Not IDE Reduces Amyloid Pathology in APP+PS1 Transgenic Mice. PLoS ONE, 2013, 8, e59626.	1.1	36
36	Ketogenic Diet Improves Motor Performance but Not Cognition in Two Mouse Models of Alzheimer's Pathology. PLoS ONE, 2013, 8, e75713.	1.1	115

#	Article	IF	CITATIONS
37	Synthetic lethality of PARP inhibition in BRCA-network disrupted tumor cells is associated with interferon pathway activation and enhanced by interferon-γ. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 691-701.	2.2	6
38	Chronological Age Impacts Immunotherapy and Monocyte Uptake Independent of Amyloid Load. Journal of NeuroImmune Pharmacology, 2012, 7, 202-214.	2.1	9
39	Abstract 2897: Preferential drug delivery to cancer cells than to normal cells by using the Niosome-Chitosan Thermo-responsive Double Package System (NCTR-DPS). Cancer Research, 2012, 72, 2897-2897.	0.4	1
40	Diverse Inflammatory Responses in Transgenic Mouse Models of Alzheimer's Disease and the Effect of Immunotherapy on These Responses. ASN Neuro, 2011, 3, AN20110018.	1.5	40
41	Activation of matrix metalloproteinases following anti-Al ² immunotherapy; implications for microhemorrhage occurrence. Journal of Neuroinflammation, 2011, 8, 115.	3.1	32
42	Virus-like Peptide Vaccines Against Aß N-terminal or C-Terminal Domains Reduce Amyloid Deposition in APP Transgenic Mice without Addition of Adjuvant. Journal of NeuroImmune Pharmacology, 2010, 5, 133-142.	2.1	19
43	Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. Journal of Neuroscience Methods, 2010, 194, 144-153.	1.3	61
44	Abnormal postâ€ŧranslational and extracellular processing of brevican in plaqueâ€bearing mice overâ€expressing APPsw. Journal of Neurochemistry, 2010, 113, 784-795.	2.1	33
45	Trafficking CD11b-Positive Blood Cells Deliver Therapeutic Genes to the Brain of Amyloid-Depositing Transgenic Mice. Journal of Neuroscience, 2010, 30, 9651-9658.	1.7	116
46	LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. Journal of Neuroinflammation, 2010, 7, 56.	3.1	234
47	Abstract 3707: Design and characterization of a double packaged system for localized drug delivery for the treatment of cancers. , 2010, , .		0
48	Suppression of Amyloid Deposition Leads to Long-Term Reductions in Alzheimer's Pathologies in Tg2576 Mice. Journal of Neuroscience, 2009, 29, 4964-4971.	1.7	29
49	Amyloidâ€Î² protofibril levels correlate with spatial learning in Arctic Alzheimer's disease transgenic mice. FEBS Journal, 2009, 276, 995-1006.	2.2	79
50	Deglycosylated Anti-Aβ Antibody Dose–Response Effects on Pathology and Memory in APP Transgenic Mice. Journal of NeuroImmune Pharmacology, 2008, 3, 187-197.	2.1	22
51	Behavioral consequences of ovarian atrophy and estrogen replacement in the APPswe mouse. Neurobiology of Aging, 2008, 29, 1512-1523.	1.5	33
52	Adeno-associated Viral (AAV) Serotype 5 Vector Mediated Gene Delivery of Endothelin-converting Enzyme Reduces Al² Deposits in APP + PS1 Transgenic Mice. Molecular Therapy, 2008, 16, 1580-1586.	3.7	64
53	Amyloid, hyperactivity, and metabolism: Theoretical comment on Vloeberghs et al. (2008) Behavioral Neuroscience, 2008, 122, 730-732.	0.6	15
54	Apparent Behavioral Benefits of Tau Overexpression in P301L Tau Transgenic Mice. Journal of Alzheimer's Disease, 2008, 15, 605-614.	1.2	36

#	Article	IF	CITATIONS
55	Contrasting In Vivo Effects of Two Peptide-Based Amyloid-Î ² Protein Aggregation Inhibitors in a Transgenic Mouse Model of Amyloid Deposition. Cell Transplantation, 2008, 17, 397-408.	1.2	5
56	Contrasting in vivo effects of two peptide-based amyloid-beta protein aggregation inhibitors in a transgenic mouse model of amyloid deposition. Cell Transplantation, 2008, 17, 397-408.	1.2	2
57	The H-2 receptor antagonist cimetidine blocks kainic acid toxicity in hippocampus as effectively as the NMDA receptor antagonist MK-801. Journal of Neuropathology and Experimental Neurology, 2007, 66, 420.	0.9	0
58	Amyloid-Î ² vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid. Neuroscience, 2007, 144, 950-960.	1.1	100
59	Organization and Function of the Central Nervous System. , 2007, , 1-8.		0
60	Improvement of a low pH antigen-antibody dissociation procedure for ELISA measurement of circulating anti-Al² antibodies. BMC Neuroscience, 2007, 8, 22.	0.8	41
61	Up-regulation of Bcl-2 in APP transgenic mice is associated with neuroprotection. Neurobiology of Disease, 2007, 25, 179-188.	2.1	26
62	Microglial Activation is Required for Aβ Clearance After Intracranial Injection of Lipopolysaccharide in APP Transgenic Mice. Journal of NeuroImmune Pharmacology, 2007, 2, 222-231.	2.1	136
63	The Central Nervous System. , 2007, , 1-2.		Ο
64	The Hâ€2 Receptor Antagonist Cimetidine Blocks Kainic Acid Toxicity in Hippocampus as Effectively as the NMDA Receptor Antagonist MKâ€801. FASEB Journal, 2007, 21, A20.	0.2	0
65	Intracranial administration of deglycosylated C-terminal-specific anti-Abeta antibody efficiently clears amyloid plaques without activating microglia in amyloid-depositing transgenic mice. Journal of Neuroinflammation, 2006, 3, 11.	3.1	42
66	Associative and motor learning in 12-month-old transgenic APP+PS1 mice. Neurobiology of Aging, 2006, 27, 1118-1128.	1.5	47
67	Two-day radial-arm water maze learning and memory task; robust resolution of amyloid-related memory deficits in transgenic mice. Nature Protocols, 2006, 1, 1671-1679.	5.5	216
68	Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo red histochemical stain. Nature Protocols, 2006, 1, 1591-1595.	5.5	140
69	Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. Clia, 2006, 53, 382-391.	2.5	106
70	Deglycosylated Anti-Amyloid-beta Antibodies Eliminate Cognitive Deficits and Reduce Parenchymal Amyloid with Minimal Vascular Consequences in Aged Amyloid Precursor Protein Transgenic Mice. Journal of Neuroscience, 2006, 26, 5340-5346.	1.7	156
71	Dysregulation of Na+/K+ ATPase by amyloid in APP+PS1 transgenic mice. BMC Neuroscience, 2005, 6, 7.	0.8	59
72	Dynamic Complexity of the Microglial Activation Response in Transgenic Models of Amyloid Deposition: Implications for Alzheimer Therapeutics. Journal of Neuropathology and Experimental Neurology, 2005, 64, 743-753.	0.9	166

#	Article	IF	CITATIONS
73	Caloric restriction attenuates Al 2 -deposition in Alzheimer transgenic models. Neurobiology of Aging, 2005, 26, 995-1000.	1.5	309
74	Amyloid suppresses induction of genes critical for memory consolidation in APP + PS1 transgenic mice. Journal of Neurochemistry, 2004, 88, 434-442.	2.1	80
75	Biochemical and Histochemical Evidence of Nonspecific Binding of α7nAChR Antibodies to Mouse Brain Tissue. Journal of Histochemistry and Cytochemistry, 2004, 52, 1367-1375.	1.3	83
76	Passive Amyloid Immunotherapy Clears Amyloid and Transiently Activates Microglia in a Transgenic Mouse Model of Amyloid Deposition. Journal of Neuroscience, 2004, 24, 6144-6151.	1.7	289
77	Overcoming antigen masking of anti-amyloidbeta antibodies reveals breaking of B cell tolerance by virus-like particles in amyloidbeta immunized amyloid precursor protein transgenic mice. BMC Neuroscience, 2004, 5, 21.	0.8	47
78	Detection of amyloid plaques in mouse models of Alzheimer's disease by magnetic resonance imaging. Magnetic Resonance in Medicine, 2004, 51, 452-457.	1.9	83
79	Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. Journal of Neuroinflammation, 2004, 1, 24.	3.1	344
80	Time-dependent reduction in Aβ levels after intracranial LPS administration in APP transgenic mice. Experimental Neurology, 2004, 190, 245-253.	2.0	140
81	Microglial activation facilitates AÎ ² plaque removal following intracranial anti-AÎ ² antibody administration. Neurobiology of Disease, 2004, 15, 11-20.	2.1	186
82	The retinal degeneration (rd) gene seriously impairs spatial cognitive performance in normal and Alzheimer's transgenic mice. NeuroReport, 2004, 15, 73-77.	0.6	43
83	Biochemical and Histochemical Evidence of Nonspecific Binding of Â7nAChR Antibodies to Mouse Brain Tissue. Journal of Histochemistry and Cytochemistry, 2004, 52, 1367-1376.	1.3	36
84	Increased fibrillar beta-amyloid in response to human clq injections into hippocampus and cortex of APP+PS1 transgenic mice. Neurochemical Research, 2003, 28, 83-93.	1.6	32
85	Mice expressing human mutant presenilin-1 exhibit decreased activation of NF-κB p50 in hippocampal neurons after injury. Molecular Brain Research, 2003, 110, 152-157.	2.5	20
86	The Association of Microglial Activation and Amyloid Reduction in APP+PS1 Transgenic Mice. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2003, 3, 27-32.	0.2	0
87	Neuregulin-1 and ErbB4 Immunoreactivity Is Associated with Neuritic Plaques in Alzheimer Disease Brain and in a Transgenic Model of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2003, 62, 42-54.	0.9	109
88	Blueberry Supplementation Enhances Signaling and Prevents Behavioral Deficits in an Alzheimer Disease Model. Nutritional Neuroscience, 2003, 6, 153-162.	1.5	332
89	Short-term β-amyloid vaccinations do not improve cognitive performance in cognitively impaired APP+PS1 mice Behavioral Neuroscience, 2003, 117, 478-484.	0.6	41
90	Intracranially Administered Anti-Î ^{^1} 2 Antibodies Reduce Î ² -Amyloid Deposition by Mechanisms Both Independent of and Associated with Microglial Activation. Journal of Neuroscience, 2003, 23, 3745-3751.	1.7	235

#	Article	IF	CITATIONS
91	Selectively Reduced Expression of Synaptic Plasticity-Related Genes in Amyloid Precursor Protein + Presenilin-1 Transgenic Mice. Journal of Neuroscience, 2003, 23, 5219-5226.	1.7	223
92	Time Course of the Development of Alzheimer-like Pathology in the Doubly Transgenic PS1+APP Mouse. Experimental Neurology, 2002, 173, 183-195.	2.0	227
93	Microglial Activation and β-Amyloid Deposit Reduction Caused by a Nitric Oxide-Releasing Nonsteroidal Anti-Inflammatory Drug in Amyloid Precursor Protein Plus Presenilin-1 Transgenic Mice. Journal of Neuroscience, 2002, 22, 2246-2254.	1.7	358
94	Neuropathology of Mice Carrying Mutant APPswe and/or PS1M146L Transgenes: Alterations in the p75NTR Cholinergic Basal Forebrain Septohippocampal Pathway. Experimental Neurology, 2001, 170, 227-243.	2.0	79
95	Correlation between cognitive deficits and AÎ ² deposits in transgenic APP+PS1 mice. Neurobiology of Aging, 2001, 22, 377-385.	1.5	176
96	Intrahippocampal LPS injections reduce Aβ load in APP+PS1 transgenic mice. Neurobiology of Aging, 2001, 22, 1007-1012.	1.5	226
97	Behavioral Assessment of Alzheimer's Transgenic Mice Following Long-Term AÎ ² Vaccination: Task Specificity and Correlations between AÎ ² Deposition and Spatial Memory. DNA and Cell Biology, 2001, 20, 737-744.	0.9	112
98	α-1-Antichymotrypsin Promotes β-Sheet Amyloid Plaque Deposition in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2001, 21, 1444-1451.	1.7	133
99	Progressive, age-related behavioral impairments in transgenic mice carrying both mutant amyloid precursor protein and presenilin-1 transgenes. Brain Research, 2001, 891, 42-53.	1.1	309
100	Duration and Specificity of Humoral Immune Responses in Mice Vaccinated with the Alzheimer's Disease-Associated β-Amyloid 1-42 Peptide. DNA and Cell Biology, 2001, 20, 723-729.	0.9	43
101	Number of AÎ ² Inoculations in APP+PS1 Transgenic Mice Influences Antibody Titers, Microglial Activation, and Congophilic Plaque Levels. DNA and Cell Biology, 2001, 20, 731-736.	0.9	90
102	Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature, 2000, 408, 982-985.	13.7	1,506
103	Aβ and perlecan in rat brain: glial activation, gradual clearance and limited neurotoxicity. Mechanisms of Ageing and Development, 2000, 112, 135-152.	2.2	16
104	Long-term induction of Fos-related antigen-2 after methamphetamine-, methylenedioxymethamphetamine-, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- and trimethyltin-induced brain injury. Neuroscience, 2000, 101, 913-919.	1.1	19
105	Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behavior Genetics, 1999, 29, 177-185.	1.4	320
106	Mice Transgenic for a Human Amyloid Precursor Protein Promoter-lacZ Reporter Construct: Appropriate Cell-Type Expression, But Not Regulation in Brain. Journal of Molecular Neuroscience, 1999, 13, 111-120.	1.1	4
107	Oral Versus Transdermal Selegiline Antidepressant-Like Activity in Rats. Pharmacology Biochemistry and Behavior, 1999, 63, 501-506.	1.3	36
108	Rats receiving systemic 3-nitropropionic acid demonstrate impairment of memory in Morris water maze. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 561-566.	1.2	9

#	Article	IF	CITATIONS
109	Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Medicine, 1998, 4, 97-100.	15.2	1,288
110	Impaired spatial navigation learning in transgenic mice over-expressing heme oxygenase-1. Brain Research, 1998, 808, 110-112.	1.1	13
111	Regional and Cellular Localization of Presenilin-2 RNA in Rat and Human Brain. Experimental Neurology, 1997, 145, 555-564.	2.0	13
112	Exaggerated astrocyte reactivity after nigrostriatal deafferentation in the aged rat. , 1997, 388, 106-119.		94
113	Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature, 1996, 383, 710-713.	13.7	1,480
114	Transplantation of Cultured Premyelinating Oligodendrocytes into Normal and Myelin-Deficient Rat Brain. Developmental Neuroscience, 1992, 14, 98-104.	1.0	30
115	Ontogeny of glycerol phosphate dehydrogenasepositive oligodendrocytes in rat brain. Impaired differentiation of oligodendrocytes in the myelin deficient mutant rat. International Journal of Developmental Neuroscience, 1992, 10, 243-253.	0.7	11
116	Transcriptional Regulation Studies of Myelin-Associated Genes in <i>Myelin-Deficient</i> Mutant Rats. Developmental Neuroscience, 1990, 12, 316-325.	1.0	30
117	The <i>Myelin-Deficient</i> Rat Mutant: Partial Recovery of Oligodendrocyte Maturation in vitro. Developmental Neuroscience, 1990, 12, 326-339.	1.0	9
118	New approaches to the study of central nervous system function. Immune-nervous system interactions and cell culture. Neurobiology of Aging, 1988, 9, 763-765.	1.5	1
119	Pituitary and Hypothalamic Glucose-6-Phosphate Dehydrogenase: Effects of Estradiol and Age in C57BL/6J Mice*. Endocrinology, 1988, 122, 726-733.	1.4	4
120	Divergent changes in D-1 and D-2 dopamine binding sites in human brain during aging. Neurobiology of Aging, 1987, 8, 195-201.	1.5	81
121	Genotypic influences on pituitary responsiveness to haloperidol in mice. Psychoneuroendocrinology, 1987, 12, 211-218.	1.3	2
122	Is ethylcholine mustard aziridinium ion a specific cholinergic neurotoxin?. Neuroscience, 1987, 22, 215-224.	1.1	172
123	Spontaneous tumors in aging female mice are more prevalent in the lateral pituitary zones. Neurobiology of Aging, 1987, 8, 67-70.	1.5	7
124	Effective Oral Administration of 17β-Estradiol to Female C57BL/6J Mice through the Drinking Water1. Biology of Reproduction, 1986, 35, 1088-1095.	1.2	47
125	The Antiestrogen LY117018 Blocks Effects of Estradiol on Pituitary Glucose-6-Phosphate Dehydrogenase Specific Activity and on Serum LH. Neuroendocrinology, 1985, 40, 381-384.	1.2	4
126	Topochemical localization of choline acetyltransferase and acetylcholinesterase in mouse brain. Brain Research, 1984, 308, 364-368.	1.1	17