Agnieszka Å**b**sarczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4335864/publications.pdf

Version: 2024-02-01

758635 713013 23 457 12 21 g-index citations h-index papers 24 24 24 431 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Progress of functionalized TiO2-based nanomaterials in the construction industry: A comprehensive review. Chemical Engineering Journal, 2022, 430, 132062.	6.6	47
2	The In Situ Hydrothermal and Microwave Syntheses of Zinc Oxides for Functional Cement Composites. Materials, 2022, 15, 1069.	1.3	8
3	Long-Term Behavior of Cement Mortars Based on Municipal Solid Waste Slag and Natural Zeolite—A Comprehensive Physico-Mechanical, Structural and Chemical Assessment. Materials, 2022, 15, 1001.	1.3	6
4	Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems. Materials, 2022, 15, 661.	1.3	10
5	Research Development in Silica Aerogel Incorporated Cementitious Composites—A Review. Polymers, 2022, 14, 1456.	2.0	13
6	Production of antibacterial cement composites containing ZnO/lignin and ZnO–SiO2/lignin hybrid admixtures. Cement and Concrete Composites, 2021, 124, 104250.	4.6	38
7	Carbon Fiberâ€"Silica Aerogel Composite with Enhanced Structural and Mechanical Properties Based on Water Glass and Ambient Pressure Drying. Nanomaterials, 2021, 11, 258.	1.9	19
8	Carbon microfibers/silica aerogel nanocomposites based on water-glass. Advanced Materials Proceedings, 2021, 3, 45-49.	0.2	1
9	Influence of nanosilica and binary oxide systems on the selected physical and mechanical properties of cement composites. Physicochemical Problems of Mineral Processing, 2021, , .	0.2	2
10	Carbon Fiber and Nickel Coated Carbon Fiber–Silica Aerogel Nanocomposite as Low-Frequency Microwave Absorbing Materials. Materials, 2020, 13, 400.	1.3	16
11	Biopolymer-Based Hybrids as Effective Admixtures for Cement Composites. Polymers, 2020, 12, 1180.	2.0	9
12	Lignin-Based Hybrid Admixtures and their Role in Cement Composite Fabrication. Molecules, 2019, 24, 3544.	1.7	23
13	Concrete slab fragmentation after bullet impact: An experimental study. International Journal of Protective Structures, 2019, 10, 380-389.	1.4	10
14	Experimental Laboratory Validation of Reproducing Road Viaducts Concreting Processes. Procedia Engineering, 2017, 172, 433-440.	1.2	2
15	Influence of Silicon Carbide and Electrocorundum on the Thermal Resistance of Cement Binders with Granulated Blast-furnace Slag. Procedia Engineering, 2017, 172, 497-504.	1.2	7
16	Influence of Selected Metal Oxides in Micro and Nanoscale on the Mechanical and Physical Properties of the Cement Mortars. Procedia Engineering, 2017, 172, 1031-1038.	1.2	16
17	Synthesis and characterization of silica aerogel-based nanocomposites with carbon fibers and carbon nanotubes in hybrid system. Journal of Sol-Gel Science and Technology, 2017, 84, 16-22.	1.1	23
18	Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites. Nanomaterials, 2017, 7, 44.	1.9	54

#	Article	IF	CITATIONS
19	Thermal and Electrical Characterization of the Carbon Nanofibers Based Cement Composites. Medziagotyra, 2017, 23, .	0.1	2
20	Influence of expanded graphite coming from the electrochemical oxidation of phenol on cement-polymer matrix. Polish Journal of Chemical Technology, 2016, 18, 5-8.	0.3	2
21	Synthesis and characterization of carbon fiber/silica aerogel nanocomposites. Journal of Non-Crystalline Solids, 2015, 416, 1-3.	1.5	39
22	Synthesis and characterisation of silica aerogel/carbon microfibers nanocomposites dried in supercritical and ambient pressure conditions. Journal of Sol-Gel Science and Technology, 2015, 76, 227-232.	1.1	33
23	Synthesis of Silica Aerogel by Supercritical Drying Method. Procedia Engineering, 2013, 57, 200-206.	1.2	77