
GisÃ"le LaPointe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4335478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salmonella enterica subsp. enterica virulence potential can be linked to higher survival within a dynamic in vitro human gastrointestinal model. Food Microbiology, 2022, 101, 103877.	2.1	5
2	Microorganisms Associated with Raw Milk. , 2022, , 319-328.		4
3	Modulation of Virulence Gene Expression in Salmonella enterica subsp. enterica typhimurium by Synthetic Milk-Derived Peptides. Probiotics and Antimicrobial Proteins, 2022, , 1.	1.9	Ο
4	Graduate Student Literature Review: Farm management practices: Potential microbial sources that determine the microbiota of raw bovine milk. Journal of Dairy Science, 2022, 105, 7276-7287.	1.4	9
5	Enzyme-assisted extraction of flavanones from citrus pomace: Obtention of natural compounds with anti-virulence and anti-adhesive effect against Salmonella enterica subsp. enterica serovar Typhimurium. Food Control, 2021, 120, 107525.	2.8	16
6	Editorial: microbial food and feed ingredients – functionality and health. FEMS Microbiology Letters, 2021, 368, .	0.7	0
7	Effect of two thermoresistant non-starter lactic acid bacteria strains on volatilome profile during Cheddar ripening simulation. International Journal of Food Microbiology, 2021, 357, 109382.	2.1	6
8	Differential fermentation of raw and processed high-amylose and waxy maize starches in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Journal of Functional Foods, 2021, 86, 104735.	1.6	6
9	Modulation of human gut microbiota composition and metabolites by arabinogalactan and Bifidobacterium longum subsp. longum BB536 in the Simulator of the Human Intestinal Microbial Ecosystem (SHIMEÁ®). Journal of Functional Foods, 2021, 87, 104820.	1.6	8
10	Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocolloids, 2020, 100, 105453.	5.6	110
11	Downregulation of Salmonella Virulence Gene Expression During Invasion of Epithelial Cells Treated with Lactococcus lactis subsp. cremoris JFR1 Requires OppA. Probiotics and Antimicrobial Proteins, 2020, 12, 577-588.	1.9	4
12	Effect of enzymatic treatment of citrus by-products on bacterial growth, adhesion and cytokine production by Caco-2 cells. Food and Function, 2020, 11, 8996-9009.	2.1	7
13	Arabinogalactan Utilization by Bifidobacterium longum subsp. longum NCC 2705 and Bacteroides caccae ATCC 43185 in Monoculture and Coculture. Microorganisms, 2020, 8, 1703.	1.6	12
14	Effect of Bifidobacterium crudilactis and 3′-sialyllactose on the toddler microbiota using the SHIME® model. Food Research International, 2020, 138, 109755.	2.9	11
15	Detection of spore forming Paenibacillus macerans in raw milk. Journal of Microbiological Methods, 2020, 177, 106048.	0.7	3
16	Fermentation of Wheat Bran and Whey Permeate by Mono-Cultures of Lacticaseibacillus rhamnosus Strains and Co-culture With Yeast Enhances Bioactive Properties. Frontiers in Bioengineering and Biotechnology, 2020, 8, 956.	2.0	9
17	Draft Genome Sequences of Five <i>Paenibacillus</i> Species of Dairy Origin. Microbiology Resource Announcements, 2020, 9, .	0.3	0
18	A toddler SHIME® model to study microbiota of young children. FEMS Microbiology Letters, 2020, 367,	0.7	12

#	Article	IF	CITATIONS
19	Bifidobacterium mongoliense genome seems particularly adapted to milk oligosaccharide digestion leading to production of antivirulent metabolites. BMC Microbiology, 2020, 20, 111.	1.3	14
20	Matching starter phenotype to functionality for low salt Cheddar cheese production based on viability, permeability, autolysis, enzyme accessibility and release in model systems. International Dairy Journal, 2020, 105, 104682.	1.5	7
21	Optimization of Preservation Methods Allows Deeper Insights into Changes of Raw Milk Microbiota. Microorganisms, 2020, 8, 368.	1.6	9
22	Prevalence and abundance of lactic acid bacteria in raw milk associated with forage types in dairy cow feeding. Journal of Dairy Science, 2020, 103, 5931-5946.	1.4	20
23	Effect of manufacturing processes and storage on aroma compounds and sensory properties of yoghurt. International Dairy Journal, 2020, 105, 104662.	1.5	22
24	Markers to Rapidly Distinguish Bacillus paralicheniformis From the Very Close Relative, Bacillus licheniformis. Frontiers in Microbiology, 2020, 11, 596828.	1.5	7
25	Invited review: Starter lactic acid bacteria survival in cheese: New perspectives on cheese microbiology. Journal of Dairy Science, 2020, 103, 10963-10985.	1.4	32
26	Examination of the Culturable Microbiota from Low-Moisture Foods Imported into Canada for Antibacterial Activity against Listeria monocytogenes. Journal of Food Protection, 2020, 83, 686-691.	0.8	3
27	Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells. Journal of Dairy Science, 2019, 102, 6802-6819.	1.4	17
28	Editorial: Microbial food and feed ingredients – reconciling tradition and novelty. FEMS Microbiology Letters, 2019, 366, .	0.7	13
29	Use of Mass Spectrometry to Profile Peptides in Whey Protein Isolate Medium Fermented by Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5. Frontiers in Nutrition, 2019, 6, 152.	1.6	38
30	Enhanced Exopolysaccharide Production by Lactobacillus rhamnosus in Co-Culture with Saccharomyces cerevisiae. Applied Sciences (Switzerland), 2019, 9, 4026.	1.3	27
31	A comprehensive perspective of food nanomaterials. Advances in Food and Nutrition Research, 2019, 88, 1-45.	1.5	8
32	Effect of Greek-style yoghurt manufacturing processes on starter andÂprobiotic bacteria populations during storage. International Dairy Journal, 2019, 93, 35-44.	1.5	27
33	The potential of pectin to impact pig nutrition and health: feeding the animal and its microbiome. FEMS Microbiology Letters, 2019, 366, i68-i82.	0.7	1
34	The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocolloids, 2019, 91, 83-91.	5.6	140
35	Editorial: Microbial food and feed ingredients – reconciling tradition and novelty. FEMS Microbiology Letters, 2019, 366, i1-i2.	0.7	0
36	Rapid screening of starter cultures for maari based on antifungal properties. Microbiological Research, 2018, 207, 66-74.	2.5	13

#	Article	IF	CITATIONS
37	Symposium review: Interaction of starter cultures and nonstarter lactic acid bacteria in the cheese environment. Journal of Dairy Science, 2018, 101, 3611-3629.	1.4	117
38	Protective effects of <i>Lactococcus lactis</i> expressing alcohol dehydrogenase and acetaldehyde dehydrogenase on acute alcoholic liver injury in mice. Journal of Chemical Technology and Biotechnology, 2018, 93, 1502-1510.	1.6	13
39	Heterologous Expression of Aldehyde Dehydrogenase in Lactococcus lactis for Acetaldehyde Detoxification at Low pH. Applied Biochemistry and Biotechnology, 2018, 184, 570-581.	1.4	11
40	Production of Exopolysaccharides by Lactococcus lactis subsp. cremoris MG1363 Expressing the eps Gene Clusters from Two Strains of Lactobacillus rhamnosus. Microbiology and Biotechnology Letters, 2018, 46, 91-101.	0.2	3
41	Fate of Escherichia coli and Kluyveromyces marxianus contaminants during storage of Greek-style yogurt produced by centrifugation or ultrafiltration. International Dairy Journal, 2017, 72, 36-43.	1.5	9
42	A Syst-OMICS Approach to Ensuring Food Safety and Reducing the Economic Burden of Salmonellosis. Frontiers in Microbiology, 2017, 8, 996.	1.5	42
43	Cell-Free Spent Media Obtained from Bifidobacterium bifidum and Bifidobacterium crudilactis Grown in Media Supplemented with 3′-Sialyllactose Modulate Virulence Gene Expression in Escherichia coli O157:H7 and Salmonella Typhimurium. Frontiers in Microbiology, 2016, 7, 1460.	1.5	29
44	Lactococcus lactis subsp. cremoris strain JFR1 attenuates Salmonella adhesion to human intestinal cells in vitro. Food Research International, 2016, 90, 147-153.	2.9	6
45	Bioaccessible Antioxidants in Milk Fermented by <i>Bifidobacterium longum</i> subsp. <i>longum</i> Strains. BioMed Research International, 2015, 2015, 1-12.	0.9	25
46	A tyrosine phosphorylation switch controls the interaction between the transmembrane modulator protein Wzd and the tyrosine kinase Wze of Lactobacillus rhamnosus. BMC Microbiology, 2015, 15, 40.	1.3	6
47	Genome sequence of Vibrio diabolicus and identification of the exopolysaccharide HE800 biosynthesis locus. Applied Microbiology and Biotechnology, 2014, 98, 10165-10176.	1.7	21
48	Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation. International Journal of Food Microbiology, 2014, 178, 76-86.	2.1	30
49	Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363. Applied Microbiology and Biotechnology, 2014, 98, 3071-3080.	1.7	33
50	Dynamics and rRNA transcriptional activity of lactococci and lactobacilli during Cheddar cheese ripening. International Journal of Food Microbiology, 2013, 166, 117-124.	2.1	30
51	Glucose Decreases Virulence Gene Expression of Escherichia coli O157:H7. Journal of Food Protection, 2012, 75, 748-752.	0.8	24
52	Assessment of Probiotic Viability during Cheddar Cheese Manufacture and Ripening Using Propidium Monoazide-PCR Quantification. Frontiers in Microbiology, 2012, 3, 350.	1.5	62
53	Maple sap predominant microbial contaminants are correlated with the physicochemical and sensorial properties of maple syrup. International Journal of Food Microbiology, 2012, 154, 30-36.	2.1	23
54	Bioinformatic analysis of the <i>Vibrio diabolicus</i> genome for an exopolysaccharide biosynthesis locus. , 2012, , .		0

4

#	Article	IF	CITATIONS
55	Exploring suppression subtractive hybridization (SSH) for discriminating Lactococcus lactis ssp. cremoris SK11 and ATCC 19257 in mixed culture based on the expression of strain-specific genes. Journal of Applied Microbiology, 2011, 110, 499-512.	1.4	6
56	Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA). Food Microbiology, 2011, 28, 980-989.	2.1	17
57	Comparative transcriptome analysis of Lactococcus lactis subsp. cremoris strains under conditions simulating Cheddar cheese manufacture. International Journal of Food Microbiology, 2011, 146, 263-275.	2.1	51
58	Assessment of the bacterial diversity of treated and untreated milk during cold storage by T-RFLP and PCR-DGGE methods. Dairy Science and Technology, 2011, 91, 573-597.	2.2	14
59	Changes in transcription profiles reflect strain contributions to defined cultures of Lactococcus lactis subsp. cremoris during milk fermentation. Dairy Science and Technology, 2011, 91, 555-572.	2.2	1
60	A review of the molecular approaches to investigate the diversity and activity of cheese microbiota. Dairy Science and Technology, 2011, 91, 495-524.	2.2	62
61	Production, purification, sequencing and activity spectra of mutacins D-123.1 and F-59.1. BMC Microbiology, 2011, 11, 69.	1.3	8
62	Transcriptome profiling of lactococcal mixed culture activity in milk by fluorescent RNA arbitrarily primed-PCR. Dairy Science and Technology, 2010, 90, 399-412.	2.2	3
63	Seasonal and regional diversity of maple sap microbiota revealed using community PCR fingerprinting and 16S rRNA gene clone libraries. Systematic and Applied Microbiology, 2010, 33, 165-173.	1.2	34
64	Molecular analysis of bacterial population structure and dynamics during cold storage of untreated and treated milk. International Journal of Food Microbiology, 2010, 138, 108-118.	2.1	105
65	Evaluation of the genetic polymorphism among Lactococcus lactis subsp. cremoris strains using comparative genomic hybridization and multilocus sequence analysis. International Journal of Food Microbiology, 2010, 144, 20-28.	2.1	18
66	Correlation of the Capsular Phenotype in Propionibacterium freudenreichii with the Level of Expression of gtf , a Unique Polysaccharide Synthase-Encoding Gene. Applied and Environmental Microbiology, 2010, 76, 2740-2746.	1.4	31
67	Sugar source modulates exopolysaccharide biosynthesis in Bifidobacterium longum subsp. longum CRC 002. Microbiology (United Kingdom), 2010, 156, 653-664.	0.7	61
68	Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus. BMC Biochemistry, 2008, 9, 10.	4.4	17
69	Genome comparison ofBifidobacterium longumstrains NCC2705 and CRC-002 using suppression subtractive hybridization. FEMS Microbiology Letters, 2008, 280, 50-56.	0.7	8
70	Capsular exopolysaccharide biosynthesis gene of Propionibacterium freudenreichii subsp. shermanii. International Journal of Food Microbiology, 2008, 125, 252-258.	2.1	25
71	Improvement of Texture and Structure of Reduced-Fat Cheddar Cheese by Exopolysaccharide-Producing Lactococci. Journal of Dairy Science, 2006, 89, 95-110.	1.4	81
72	Use of antisense RNA to modulate glycosyltransferase gene expression and exopolysaccharide molecular mass in Lactobacillus rhamnosus, Journal of Microbiological Methods, 2006, 65, 216-225	0.7	26

#	Article	IF	CITATIONS
73	Mutacin H-29B is identical to mutacin II (J-T8). BMC Microbiology, 2006, 6, 36.	1.3	10
74	Quantification by real-time PCR of Lactococcus lactis subsp. cremoris in milk fermented by a mixed culture. Applied Microbiology and Biotechnology, 2005, 66, 414-421.	1.7	52
75	Identification and Molecular Characterization of the Chromosomal Exopolysaccharide Biosynthesis Gene Cluster from Lactococcus lactis subsp. cremoris SMQ-461. Applied and Environmental Microbiology, 2005, 71, 7414-7425.	1.4	61
76	Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology (United Kingdom), 2005, 151, 1839-1851.	0.7	106
77	Impact of ropy and capsular exopolysaccharide-producing strains of Lactococcus lactis subsp. cremoris on reduced-fat Cheddar cheese production and whey composition. International Dairy Journal, 2005, 15, 459-471.	1.5	37
78	Application of ruthenium red and colloidal gold-labeled lectin for the visualization of bacterial exopolysaccharides in Cheddar cheese matrix using transmission electron microscopy. International Dairy Journal, 2005, 15, 1044-1055.	1.5	13
79	Molecular characterization of three plasmids from Bifidobacterium longum. Plasmid, 2004, 51, 87-100.	0.4	33
80	Identification and characterization of a conserved nuclease secreted by strains of the Lactobacillus casei group. Journal of Applied Microbiology, 2004, 96, 367-374.	1.4	11
81	Improved methods for mutacin detection and production. Journal of Microbiological Methods, 2004, 59, 351-361.	0.7	22
82	Consensus-Degenerate Hybrid Oligonucleotide Primers for Amplification of Priming Glycosyltransferase Genes of the Exopolysaccharide Locus in Strains of the Lactobacillus casei Group. Applied and Environmental Microbiology, 2003, 69, 3299-3307.	1.4	46
83	Diversity of Streptococcus mutans bacteriocins as confirmed by DNA analysis using specific molecular probes. Gene, 2002, 283, 125-131.	1.0	30
84	Comparison of the activity spectra against pathogens of bacterial strains producing a mutacin or a lantibiotic. Canadian Journal of Microbiology, 2001, 47, 322-331.	0.8	53
85	A coelectroporation method for the isolation of cryptic plasmids from Lactococcus lactis. Letters in Applied Microbiology, 2001, 33, 7-11.	1.0	4
86	Molecular Characterization of a Theta Replication Plasmid and Its Use for Development of a Two-Component Food-Grade Cloning System for Lactococcus lactis. Applied and Environmental Microbiology, 2001, 67, 1700-1709.	1.4	70
87	Comparison of exopolysaccharide production by strains of Lactobacillus rhamnosus and Lactobacillus paracasei grown in chemically defined medium and milk. Journal of Industrial Microbiology and Biotechnology, 2000, 24, 251-255.	1.4	52
88	MICs of Mutacin B-Ny266, Nisin A, Vancomycin, and Oxacillin against Bacterial Pathogens. Antimicrobial Agents and Chemotherapy, 2000, 44, 24-29.	1.4	158
89	Production of Exopolysaccharide by Lactobacillus rhamnosus R and Analysis of Its Enzymatic Degradation during Prolonged Fermentation. Applied and Environmental Microbiology, 2000, 66, 2302-2310.	1.4	173
90	Purification and structure of mutacin B-Ny266: a new lantibiotic produced byStreptococcus mutans. FEBS Letters, 1997, 410, 275-279.	1.3	81

#	Article	IF	CITATIONS
91	Cyclic amide amidohydrolase activities in Pisum sativum hulls. Bioresource Technology, 1997, 61, 91-97.	4.8	Ο
92	Note : Genetic and biochemical characterization of nisin Z produced by Lactococcus lactis ssp. lactis biovar. diacetylactis UL 719. Journal of Applied Microbiology, 1997, 83, 133-138.	1.4	46
93	Conditions used with a continuous cultivation system to screen for d-hydantoinase-producing microorganisms. Applied Microbiology and Biotechnology, 1995, 43, 259-266.	1.7	3
94	Use of a polymerase-chain-reaction-amplified DNA probe from Pseudomonas putida to detect D-hydantoinase-producing microorganisms by direct colony hybridization. Applied Microbiology and Biotechnology, 1995, 42, 895-900.	1.7	1
95	Conditions used with a continuous cultivation system to screen for d-hydantoinase-producing microorganisms. Applied Microbiology and Biotechnology, 1995, 43, 259-266.	1.7	0
96	Cloning, sequencing, and expression in Escherichia coli of the D-hydantoinase gene from Pseudomonas putida and distribution of homologous genes in other microorganisms. Applied and Environmental Microbiology, 1994, 60, 888-895.	1.4	57
97	Spontaneous mutation conferring the ability to catabolize mannopine in Agrobacterium tumefaciens. Journal of Bacteriology, 1992, 174, 2631-2639.	1.0	15
98	Responses of Hayfield Vegetation to Spring Grazing by Greater Snow Geese. Journal of Applied Ecology, 1991, 28, 187.	1.9	7
99	The estimation of dry green biomass in hayfields from canopy spectroreflectance measurements. Grass and Forage Science, 1987, 42, 73-78.	1.2	12
100	The savannah sparrow territorial system: can habitat features be related to breeding success?. Canadian Journal of Zoology, 1984, 62, 1819-1828.	0.4	38