Jerry Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/433530/publications.pdf

Version: 2024-02-01

445 papers 25,066 citations

85 h-index 128 g-index

455 all docs

455 docs citations

455 times ranked 17263 citing authors

#	Article	IF	CITATIONS
1	Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320, 13-41.	4.1	1,006
2	Adsorption of CO ₂ , CH ₄ , N ₂ O, and N ₂ on MOF-5, MOF-177, and Zeolite 5A. Environmental Science & Environment	4.6	689
3	Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. Journal of Colloid and Interface Science, 2011, 353, 549-556.	5.0	426
4	Tailoring Pore Properties of MCM-48 Silica for Selective Adsorption of CO2. Journal of Physical Chemistry B, 2005, 109, 6287-6293.	1.2	304
5	Adsorption and Diffusion of Carbon Dioxide on Metalâ^Organic Framework (MOF-5). Industrial & Engineering Chemistry Research, 2009, 48, 10015-10020.	1.8	294
6	Microporous and dense inorganic membranes: current status and prospective. Separation and Purification Technology, 2001, 25, 39-55.	3.9	291
7	Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. Journal of Membrane Science, 2014, 451, 85-93.	4.1	251
8	MICROPOROUS INORGANIC MEMBRANES. Separation and Purification Reviews, 2002, 31, 229-379.	0.8	241
9	Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes. Microporous and Mesoporous Materials, 2000, 34, 241-253.	2.2	230
10	Mechanism of High-Temperature CO2 Sorption on Lithium Zirconate. Environmental Science & Emp; Technology, 2003, 37, 1999-2004.	4.6	226
11	Molecular Sieving MFI-Type Zeolite Membranes for Pervaporation Separation of Xylene Isomers. Journal of the American Chemical Society, 2004, 126, 4776-4777.	6.6	222
12	Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. Journal of Membrane Science, 1998, 150, 87-98.	4.1	216
13	Stability of ZIF-8 membranes and crystalline powders in water at room temperature. Journal of Membrane Science, 2015, 485, 103-111.	4.1	206
14	Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chemical Engineering Science, 2003, 58, 4377-4385.	1.9	199
15	Gas permeation through DDRâ€ŧype zeolite membranes at high temperatures. AICHE Journal, 2008, 54, 1478-1486.	1.8	194
16	Ordered mesoporous and macroporous inorganic films and membranes. Journal of Membrane Science, 2004, 235, 53-72.	4.1	190
17	Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177. Journal of Colloid and Interface Science, 2010, 348, 615-620.	5.0	182
18	A comparative study on thermal and hydrothermal stability of alumina, titania and zirconia membranes. Journal of Membrane Science, 1994, 91, 27-45.	4.1	173

#	Article	IF	CITATIONS
19	Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. Chemical Communications, 2013, 49, 1196.	2.2	170
20	Molecular sieves for gas separation. Science, 2016, 353, 121-122.	6.0	168
21	Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Description of the Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Description of the Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Description of the Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Description of the Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Description of the Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Description Organic Framework (MOF-	1.8	165
22	Preparation and Characterization of High-Temperature Thermally Stable Alumina Composite Membrane. Journal of the American Ceramic Society, 1991, 74, 219-224.	1.9	164
23	Stability of ZIF-8 in water under ambient conditions. Microporous and Mesoporous Materials, 2019, 279, 201-210.	2.2	164
24	Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes. Journal of Membrane Science, 1995, 104, 251-262.	4.1	163
25	Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding. Journal of Membrane Science, 2004, 245, 41-51.	4.1	162
26	Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Separation and Purification Technology, 2004, 36, 41-51.	3.9	159
27	Kinetics of ZIF-8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments. Journal of Physical Chemistry C, 2016, 120, 14015-14026.	1.5	158
28	Chemical Stability and Its Improvement of Palladium-Based Metallic Membranes. Industrial & Engineering Chemistry Research, 2004, 43, 6920-6930.	1.8	157
29	Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation. Nature Communications, 2022, 13, 200.	5.8	157
30	Optimizing Pore Space for Flexible-Robust Metal–Organic Framework to Boost Trace Acetylene Removal. Journal of the American Chemical Society, 2020, 142, 9744-9751.	6.6	154
31	Carbonate–ceramic dual-phase membrane for carbon dioxide separation. Journal of Membrane Science, 2010, 357, 122-129.	4.1	153
32	High Capacity MoO ₂ /Graphite Oxide Composite Anode for Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2012, 3, 309-314.	2.1	151
33	Oxygen permeation through thin mixed-conducting solid oxide membranes. AICHE Journal, 1994, 40, 786-798.	1.8	147
34	Seawater desalination performance of MFI type membranes made by secondary growth. Separation and Purification Technology, 2009, 68, 343-350.	3.9	145
35	Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas. Journal of Membrane Science, 2000, 166, 13-22.	4.1	142
36	Template-free secondary growth synthesis of MFI type zeolite membranes. Microporous and Mesoporous Materials, 2001, 43, 319-327.	2.2	138

#	Article	IF	Citations
37	Adsorption equilibrium and kinetics of fluoride on sol–gel-derived activated alumina adsorbents. Journal of Colloid and Interface Science, 2010, 349, 307-313.	5.0	138
38	Novel molecular sieve silica (MSS) membranes: characterisation and permeation of single-step and two-step sol–gel membranes. Journal of Membrane Science, 2002, 198, 9-21.	4.1	134
39	Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination. Journal of Materials Chemistry, 2012, 22, 19222.	6.7	134
40	Bismuth oxide: a new lithium-ion battery anode. Journal of Materials Chemistry A, 2013, 1, 12123.	5.2	132
41	Dual-Phase Metalâ^'Carbonate Membrane for High-Temperature Carbon Dioxide Separation. Industrial & Samp; Engineering Chemistry Research, 2005, 44, 7999-8006.	1.8	131
42	Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. Journal of Membrane Science, 1995, 99, 89-100.	4.1	128
43	Adsorption of oils from pure liquid and oil–water emulsion on hydrophobic silica aerogels. Separation and Purification Technology, 2012, 99, 28-35.	3.9	128
44	Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes. Solid State Ionics, 2000, 130, 149-156.	1.3	126
45	Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition. Journal of Membrane Science, 1996, 120, 261-272.	4.1	125
46	Synthesis, characterization and gas transport properties of MOF-5 membranes. Journal of Membrane Science, 2011, 382, 82-90.	4.1	123
47	Performance of ionic-conducting ceramic/carbonate composite material as solid oxide fuel cell electrolyte and CO2 permeation membrane. Catalysis Today, 2009, 148, 303-309.	2.2	122
48	A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO ₂ –N ₂ separation. Chemical Communications, 2014, 50, 3699-3701.	2.2	122
49	Structural and surface chemical properties of sol–gel derived TiO2–ZrO2 oxides. Applied Catalysis A: General, 2004, 265, 35-42.	2.2	119
50	Experimental studies on pore size change of porous ceramic membranes after modification. Journal of Membrane Science, 1993, 79, 65-82.	4.1	118
51	Electroless plating synthesis, characterization and permeation properties of Pd–Cu membranes supported on ZrO modified porous stainless steel. Journal of Membrane Science, 2005, 265, 142-152.	4.1	116
52	Fabrication of thin metallic membranes by MOCVD and sputtering. Journal of Membrane Science, 1997, 133, 217-230.	4.1	112
53	Polycrystalline MFI zeolite membranes: xylene pervaporation and its implication on membrane microstructure. Journal of Membrane Science, 1999, 158, 17-27.	4.1	111
54	Methane decomposition to carbon nanotubes and hydrogen on an alumina supported nickel aerogel catalyst. Catalysis Today, 2002, 74, 145-155.	2,2	110

#	Article	IF	CITATIONS
55	Recent progress in polycrystalline zeolite membrane research. Current Opinion in Chemical Engineering, 2013, 2, 209-216.	3.8	109
56	Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework. Science Advances, 2020, 6, eaaz4322.	4.7	107
57	Multicomponent hydrogen/hydrocarbon separation by MFI-type zeolite membranes. AICHE Journal, 2000, 46, 1957-1966.	1.8	105
58	Selective oxidation of ethane to ethylene in a dense tubular membrane reactor. Journal of Membrane Science, 2002, 209, 457-467.	4.1	104
59	Microporous Silica and Zeolite Membranes for Hydrogen Purification. MRS Bulletin, 2006, 31, 756-764.	1.7	104
60	Biodiesel Production from Jatropha Curcas, Waste Cooking, and Camelina Sativa Oils. Industrial & Engineering Chemistry Research, 2009, 48, 10850-10856.	1.8	102
61	Modeling and analysis of carbon dioxide permeation through ceramic-carbonate dual-phase membranes. Journal of Membrane Science, 2009, 345, 110-118.	4.1	101
62	Microwave-Assisted Catalytic Transesterification of <i>Camelina Sativa</i> Oil. Energy & Samp; Fuels, 2010, 24, 1298-1304.	2.5	100
63	CVD synthesis and gas permeation properties of thin palladium/alumina membranes. AICHE Journal, 1998, 44, 174-183.	1.8	98
64	Improvement of Thermal Stability of Porous Nanostructured Ceramic Membranes. Industrial & Engineering Chemistry Research, 1994, 33, 860-870.	1.8	97
65	Hydrothermal stability of pure and modified microporous silica membranes. Journal of Materials Science, 1995, 30, 2803-2808.	1.7	95
66	High-Temperature Sorption Process for Air Separation and Oxygen Removal. Industrial & Engineering Chemistry Research, 2002, 41, 2775-2784.	1.8	95
67	Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes. Solid State Ionics, 2005, 176, 2653-2662.	1.3	95
68	Adsorption Equilibria and Kinetics of Carbon Monoxide on Zeolite 5A, 13X, MOF-5, and MOF-177. Journal of Chemical & Camp; Engineering Data, 2009, 54, 2245-2250.	1.0	95
69	Hydrolysis and condensation of ZIF-8 in water. Microporous and Mesoporous Materials, 2019, 288, 109568.	2.2	95
70	Catalytic Properties of Oxygen Semipermeable Perovskite-Type Ceramic Membrane Materials for Oxidative Coupling of Methane. Journal of Catalysis, 1996, 164, 220-231.	3.1	94
71	Composition control and hydrogen permeation characteristics of sputter deposited palladium–silver membranes. Journal of Membrane Science, 1999, 161, 67-76.	4.1	94
72	Vertically aligned carbon nanotube membranes on macroporous alumina supports. Journal of Membrane Science, 2007, 304, 1-7.	4.1	94

#	Article	IF	CITATIONS
73	Transesterification of Camelina Sativa Oil Using Heterogeneous Metal Oxide Catalysts. Energy & Energy Fuels, 2009, 23, 4619-4624.	2.5	94
74	Gas Permeation and Diffusion Characteristics of MFI-Type Zeolite Membranes at High Temperatures. Journal of Physical Chemistry C, 2009, 113 , $3767-3774$.	1.5	94
75	Enhanced Cr(VI) removal by polyethylenimine- and phosphorus-codoped hierarchical porous carbons. Journal of Colloid and Interface Science, 2018, 523, 110-120.	5.0	94
76	CO2 adsorption performance for amine grafted particulate silica aerogels. Chemical Engineering Journal, 2014, 254, 190-197.	6.6	93
77	Oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes with chemical reactions. Journal of Membrane Science, 2004, 231, 133-146.	4.1	91
78	Gamma-Alumina Supported Carbon Molecular Sieve Membrane for Propylene/Propane Separation. Industrial & Description of the Carbon Molecular Sieve Membrane for Propylene/Propane Separation. Industrial & Description of the Carbon Molecular Sieve Membrane for Propylene/Propane Separation.	1.8	91
79	Comparison of Oxygen Permeability and Stability of Perovskite Type La0.2A0.8Co0.2Fe0.8O3-δ(A = Sr, Ba,) Tj ET	ГQq1 1 0.7 1.8	'84314 rgBT
80	Ionic conducting ceramic and carbonate dual phase membranes for carbon dioxide separation. Journal of Membrane Science, 2012, 417-418, 174-182.	4.1	90
81	Metal organic framework membranes for separation applications. Current Opinion in Chemical Engineering, 2015, 8, 21-28.	3.8	90
82	Analysis of oxidative coupling of methane in dense oxide membrane reactors. Journal of Membrane Science, 1995, 103, 219-233.	4.1	89
83	Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Bioresource Technology, 2017, 223, 91-97.	4.8	89
84	Selective CO2 capture in an imine linked porphyrin porous polymer. Polymer Chemistry, 2013, 4, 4566.	1.9	88
85	Desalination of seawater ion complexes by MFI-type zeolite membranes: Temperature and long term stability. Journal of Membrane Science, 2014, 453, 126-135.	4.1	88
86	Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection. Sensors and Actuators B: Chemical, 2008, 134, 687-693.	4.0	86
87	Microporous inorganic membranes for high temperature hydrogen purification. Journal of Applied Physics, 2008, 104, .	1.1	86
88	Hydrogen adsorption equilibrium and kinetics in metal–organic framework (MOF-5) synthesized with DEF approach. Separation and Purification Technology, 2009, 64, 280-287.	3.9	86
89	CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine. Microporous and Mesoporous Materials, 2013, 176, 123-131.	2.2	86
90	Template-free synthesis of MFI-type zeolite membranes: Permeation characteristics and thermal stability improvement of membrane structure. Journal of Membrane Science, 2006, 286, 213-222.	4.1	85

#	Article	IF	Citations
91	Synthesis ofb-Oriented TS-1 Films on Chitosan-Modified α-Al2O3 Substrates. Advanced Materials, 2006, 18, 3261-3265.	11.1	85
92	Ultrathin carbon molecular sieve membrane for propylene/propane separation. AICHE Journal, 2016, 62, 491-499.	1.8	85
93	Silver Nanoparticles from Ultrasonic Spray Pyrolysis of Aqueous Silver Nitrate. Aerosol Science and Technology, 2005, 39, 1010-1014.	1.5	84
94	Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance. Journal of Membrane Science, 2012, 396, 128-137.	4.1	84
95	Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation. Journal of Membrane Science, 2014, 450, 425-432.	4.1	84
96	Thermal stability and its improvement of the alumina membrane top-layers prepared by sol-gel methods. Journal of Materials Science, 1991, 26, 715-720.	1.7	82
97	Sol-gel synthesis and characterization of yttria stabilized zirconia membranes. Journal of Membrane Science, 1998, 139, 75-83.	4.1	81
98	In Situ Synthesis of P-Type Zeolite Membranes on Porous α-Alumina Supports. Industrial & Engineering Chemistry Research, 1998, 37, 2404-2409.	1.8	81
99	Synthesis and oxygen permeation properties of ceramic-metal dual-phase membranes. Journal of Membrane Science, 2000, 167, 123-133.	4.1	81
100	Removal of emulsified oil from water by inverse fluidization of hydrophobic aerogels. Powder Technology, 2010, 203, 298-309.	2.1	81
101	Hydrogenative Ring-Rearrangement of Biobased Furanic Aldehydes to Cyclopentanone Compounds over Pd/Pyrochlore by Introducing Oxygen Vacancies. ACS Catalysis, 2020, 10, 7355-7366.	5.5	81
102	Hydrogen adsorption on metal-organic framework (MOF-5) synthesized by DMF approach. Journal of Porous Materials, 2009, 16, 141-149.	1.3	79
103	Nanostructured thin palladium-silver membranes: Effects of grain size on gas permeation properties. Journal of Materials Science, 2001, 36, 3221-3227.	1.7	77
104	Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AICHE Journal, 2002, 48, 2298-2306.	1.8	77
105	High-Temperature Stability of Palladium Membranes on Porous Metal Supports with Different Intermediate Layers. Industrial & Engineering Chemistry Research, 2009, 48, 1880-1886.	1.8	77
106	High performance BaBiScCo hollow fibre membranes for oxygen transport. Energy and Environmental Science, 2011, 4, 2516.	15.6	77
107	Membranes for helium recovery: An overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176, 335-383.	3.9	77
108	Synthesis of submicron polycrystalline MFI zeolite films on porous ceramic supports. Journal of Membrane Science, 1998, 148, 233-241.	4.1	75

#	Article	IF	Citations
109	Thermal stability of ZIF-8 membranes for gas separations. Journal of Membrane Science, 2017, 532, 9-19.	4.1	75
110	Ultrafast Semiâ€Solid Processing of Highly Durable ZIFâ€8 Membranes for Propylene/Propane Separation. Angewandte Chemie - International Edition, 2020, 59, 21909-21914.	7.2	75
111	Catalyst impregnation and ethylene polymerization with mesoporous particle supported nickel-diimine catalyst. Polymer, 2003, 44, 969-980.	1.8	73
112	Adsorption Equilibria of CO ₂ , CH ₄ , N ₂ , O ₂ , and Ar on High Silica Zeolites. Journal of Chemical & Engineering Data, 2011, 56, 4017-4023.	1.0	73
113	Electric Transport and Oxygen Permeation Properties of Lanthanum Cobaltite Membranes Synthesized by Different Methods. Industrial & Engineering Chemistry Research, 2000, 39, 646-653.	1.8	72
114	CVD of solid oxides in porous substrates for ceramic membrane modification. AICHE Journal, 1992, 38, 445-454.	1.8	70
115	Ceramic–glass composite high temperature seals for dense ionic-conducting ceramic membranes. Journal of Membrane Science, 2001, 193, 185-193.	4.1	69
116	Exposing the Molecular Sieving Architecture of Amorphous Silica Using Positron Annihilation Spectroscopy. Advanced Functional Materials, 2008, 18, 3818-3826.	7.8	69
117	A New Approach Towards Acid Catalysts with High Reactivity Based on Graphene Nanosheets. ChemCatChem, 2014, 6, 2354-2363.	1.8	69
118	Metalâ€organic framework membrane process for high purity CO ₂ production. AICHE Journal, 2016, 62, 3836-3841.	1.8	68
119	Sol-Gel Synthesis of Pure and Copper Oxide Coated Mesoporous Alumina Granular Particles. Journal of Catalysis, 1998, 174, 43-51.	3.1	67
120	Tubular lanthanum cobaltite perovskite type membrane for oxygen permeation. Journal of Membrane Science, 2000, 166, 51-61.	4.1	67
121	Oxygen Permeation and Oxidative Coupling of Methane in Yttria Doped Bismuth Oxide Membrane Reactor. Journal of Catalysis, 2000, 193, 58-64.	3.1	67
122	An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation. Chemical Communications, 2013, 49, 9654.	2.2	67
123	Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. Journal of Membrane Science, 2018, 550, 238-245.	4.1	67
124	Sol–gel-derived mesoporous γ-alumina granules. Microporous and Mesoporous Materials, 1999, 30, 359-369.	2.2	66
125	Adsorption Equilibrium and Kinetics of Microorganisms on Single-Wall Carbon Nanotubes. IEEE Sensors Journal, 2008, 8, 954-962.	2.4	66
126	Synthesis and characterization of thin ceramic-carbonate dual-phase membranes for carbon dioxide separation. Journal of Membrane Science, 2013, 444, 402-411.	4.1	66

#	Article	IF	CITATIONS
127	Improving hydrostability of ZIF-8 membranes via surface ligand exchange. Journal of Membrane Science, 2017, 532, 1-8.	4.1	66
128	Evolution of Pore and Phase Structure of Sol-Gel Derived Lanthana Doped Titania at High Temperatures. Industrial & Description Chemistry Research, 1995, 34, 1189-1195.	1.8	64
129	Pure and doped CeO2 thin films prepared by MOCVD process. Thin Solid Films, 1998, 324, 89-93.	0.8	64
130	Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel. Green Chemistry, 2012, 14, 809.	4.6	64
131	Effects of support pore structure on carbon dioxide permeation of ceramic-carbonate dual-phase membranes. Chemical Engineering Science, 2013, 104, 891-898.	1.9	64
132	Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation. European Polymer Journal, 2008, 44, 1217-1224.	2.6	63
133	Crossflow filtration of chromium hydroxide suspension by ceramic membranes: fouling and its minimization by backpulsing. Journal of Membrane Science, 2000, 174, 111-122.	4.1	62
134	Effects of Water Vapor and Trace Gas Impurities in Flue Gas on CO ₂ /N ₂ Separation Using ZIF-68. Journal of Physical Chemistry C, 2014, 118, 6744-6751.	1.5	61
135	ZIF-8 Membrane Ethylene/Ethane Transport Characteristics in Single and Binary Gas Mixtures. Industrial & Discourse Engineering Chemistry Research, 2017, 56, 7567-7575.	1.8	61
136	An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to $\hat{I}^3 \hat{a} \in V$ alerolactone. ChemSusChem, 2017, 10, 1720-1732.	3.6	60
137	Sulfur Dioxide Sorption Properties and Thermal Stability of Hydrophobic Zeolites. Industrial & mp; Engineering Chemistry Research, 1995, 34, 4063-4070.	1.8	59
138	Adsorption and diffusion of carbon dioxide on ZIF-68. Chemical Engineering Science, 2014, 118, 32-40.	1.9	59
139	Propylene/Propane Mixture Separation Characteristics and Stability of Carbon Molecular Sieve Membranes. Industrial & Description Chemistry Research, 2015, 54, 9824-9831.	1.8	59
140	Electrical conducting properties of proton-conducting terbium-doped strontium cerate membrane. Solid State Ionics, 1999, 120, 85-93.	1.3	58
141	Synthesis and characterisation of MFI-type zeolites supported on carbon materials. Microporous and Mesoporous Materials, 2001, 42, 255-268.	2.2	58
142	Thermal stability improvement on pore and phase structure of sol-gel derived zirconia. Journal of Materials Science, 1995, 30, 3075-3081.	1.7	57
143	Swelling/deswelling kinetics of PNIPAAm hydrogels synthesized by microwave irradiation. Chemical Engineering Journal, 2008, 142, 263-270.	6.6	57
144	Hydrogen permeation through terbium doped strontium cerate membranes enabled by presence of reducing gas in the downstream. Journal of Membrane Science, 2009, 345, 201-206.	4.1	57

#	Article	IF	CITATIONS
145	Exploiting Synergistic Effects of Intermolecular Interactions To Synthesize Hybrid Rejuvenators To Revitalize Aged Asphalt. ACS Sustainable Chemistry and Engineering, 2019, 7, 15514-15525.	3.2	57
146	Morphological and mechanical properties of nascent polyethylene fibers produced via ethylene extrusion polymerization with a metallocene catalyst supported on MCM-41 particles. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2433-2443.	2.4	56
147	Granulation of sol-gel-derived nanostructured alumina. AICHE Journal, 1997, 43, 505-514.	1.8	55
148	Nanocomposite Silicalite-1/Polydimethylsiloxane Membranes for Pervaporation of Ethanol from Dilute Aqueous Solutions. Industrial & Engineering Chemistry Research, 2013, 52, 5207-5212.	1.8	55
149	Carbon dioxide permeation properties and stability of samarium-doped-ceria carbonate dual-phase membranes. Journal of Membrane Science, 2014, 467, 244-252.	4.1	55
150	Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes. Industrial & Engineering Chemistry Research, 2010, 49, 2768-2774.	1.8	54
151	Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions. Bioresource Technology, 2017, 236, 129-137.	4.8	54
152	Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation. Chemical Engineering Science, 2018, 190, 312-319.	1.9	54
153	Self-Assembled Monolayer of Metal Oxide Nanosheet and Structure and Gas-Sensing Property Relationship. ACS Sensors, 2019, 4, 1279-1290.	4.0	53
154	Synergistic binding sites in a hybrid ultramicroporous material for one-step ethylene purification from ternary C ₂ hydrocarbon mixtures. Science Advances, 2022, 8, .	4.7	53
155	High and selective CO ₂ adsorption by a phthalocyanine nanoporous polymer. Journal of Materials Chemistry A, 2015, 3, 10284-10288.	5.2	52
156	Adsorption Configuration-Determined Selective Hydrogenative Ring Opening and Ring Rearrangement of Furfural over Metal Phosphate. ACS Catalysis, 2021, 11, 6406-6415.	5.5	52
157	A Kinetic Study of the Electrochemical Vapor Deposition of Solid Oxide Electrolyte Films on Porous Substrates. Journal of the Electrochemical Society, 1990, 137, 3960-3966.	1.3	51
158	Modelling and analysis of CVD processes in porous media for ceramic composite preparation. Chemical Engineering Science, 1991, 46, 3067-3080.	1.9	51
159	Inorganic membranes for carbon dioxide and nitrogen separation. Reviews in Chemical Engineering, 2012, 28, .	2.3	51
160	Zeolite coated polypropylene separators with tunable surface properties for lithium-ion batteries. Microporous and Mesoporous Materials, 2016, 226, 406-414.	2.2	51
161	Efficient SO ₂ Removal Using a Microporous Metal–Organic Framework with Molecular Sieving Effect. Industrial & Damp; Engineering Chemistry Research, 2020, 59, 874-882.	1.8	51
162	Amine Distribution and Carbon Dioxide Sorption Performance of Amine Coated Silica Aerogel Sorbents: Effect of Synthesis Methods Industrial & Engineering Chemistry Research, 2013, 52, 14671-14679.	1.8	50

#	Article	IF	CITATIONS
163	Organic solvent pervaporation properties of MOF-5 membranes. Separation and Purification Technology, 2014, 121, 38-45.	3.9	50
164	Experimental and simulation study on efficient CH4/N2 separation by pressure swing adsorption on silicalite-1 pellets. Chemical Engineering Journal, 2020, 388, 124222.	6.6	50
165	A Comparative Simulation Study on Oxidative Coupling of Methane in Fixed-Bed and Membrane Reactors. Industrial & Description of Methane in Fixed-Bed and Membrane Reactors. Industrial & Description of Methane in Fixed-Bed and Membrane Reactors. Industrial & Description of Methane in Fixed-Bed and Membrane Reactors. Industrial & Description of Methane in Fixed-Bed and Membrane Reactors. Industrial & Description of Methane in Fixed-Bed and Membrane Reactors. Industrial & Description of Methane in Fixed-Bed and Membrane Reactors. Industrial & Description of Methane in Fixed-Bed and Membrane Reactors. Industrial & Description of Methane in Fixed-Bed and Membrane Reactors. Industrial & Description of Methane Industrial & Description & Descripti	1.8	49
166	Synthesis of zeolite membranes. Science Bulletin, 2004, 49, 2547.	1.7	49
167	Boosting CO ₂ -to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength. Journal of Materials Chemistry A, 2021, 9, 1705-1712.	5.2	49
168	A transient TGA study on oxygen permeation properties of perovskite-type ceramic membrane. Solid State Ionics, 1998, 110, 209-221.	1.3	48
169	Structure and oxygen permeability of a dual-phase membrane. Journal of Membrane Science, 2003, 224, 107-115.	4.1	48
170	High temperature sorption separation of air for producing oxygen-enriched CO2 stream. AICHE Journal, 2006, 52, 574-581.	1.8	48
171	Postsynthetic Modification of ZIF-8 Membranes via Membrane Surface Ligand Exchange for Light Hydrocarbon Gas Separation Enhancement. ACS Applied Materials & Exchange for Light Hydrocarbon Gas Separation Enhancement.	4.0	48
172	Tubular dual-layer MFI zeolite membrane reactor for hydrogen production via the WGS reaction: Experimental and modeling studies. Chemical Engineering Journal, 2015, 268, 219-229.	6.6	47
173	Influences of Deprotonation and Modulation on Nucleation and Growth of UiO-66: Intergrowth and Orientation. Journal of Physical Chemistry C, 2018, 122, 2200-2206.	1.5	47
174	Inorganic Membranes for Process Intensification: Challenges and Perspective. Industrial & Engineering Chemistry Research, 2019, 58, 5787-5796.	1.8	47
175	Oxygen semipermeable solid oxide membrane composites prepared by electrochemical vapor deposition. Journal of Membrane Science, 1992, 66, 211-226.	4.1	46
176	Sorption and diffusion of volatile organic compounds in polydimethylsiloxane membranes. Journal of Applied Polymer Science, 1998, 67, 165-175.	1.3	46
177	High CO2 permeability of ceramic-carbonate dual-phase hollow fiber membrane at medium-high temperature. Journal of Membrane Science, 2020, 597, 117770.	4.1	46
178	Oxidative coupling of methane on fluorite-structured samarium–yttrium–bismuth oxide. Applied Catalysis A: General, 2001, 213, 33-45.	2.2	45
179	Controlled Oxidative Coupling of Methane by Ionic Conducting Ceramic Membrane. Catalysis Letters, 2002, 78, 239-242.	1.4	45
180	A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes. Microporous and Mesoporous Materials, 2007, 105, 140-148.	2.2	45

#	Article	IF	CITATIONS
181	Effects of adsorption-induced microstructural changes on separation of xylene isomers through MFI-type zeolite membranes. Journal of Membrane Science, 2008, 320, 505-513.	4.1	45
182	Modeling and analysis of ceramic–carbonate dual-phase membrane reactor for carbon dioxide reforming with methane. International Journal of Hydrogen Energy, 2011, 36, 8292-8300.	3.8	45
183	Synthesis of a phthalocyanine and porphyrin 2D covalent organic framework. CrystEngComm, 2013, 15, 6892.	1.3	45
184	Pervaporation Separation of Organic Mixtures by MOF-5 Membranes. Industrial & Engineering Chemistry Research, 2016, 55, 8652-8658.	1.8	45
185	Hydrogen production with carbon dioxide capture by dual-phase ceramic-carbonate membrane reactor via steam reforming of methane. Journal of Membrane Science, 2020, 598, 117780.	4.1	44
186	Sorption and diffusion of VOCs in DAY zeolite and silicalite-filled PDMS membranes. Journal of Membrane Science, 1997, 133, 231-243.	4.1	43
187	Oxidative coupling of methane on improved bismuth oxide membrane reactors. AICHE Journal, 2001, 47, 436-444.	1.8	43
188	Microstructural and gas separation properties of CVD modified mesoporous \hat{l}^3 -alumina membranes. Journal of Membrane Science, 2002, 195, 35-50.	4.1	43
189	Investigation of the effects of ion and water interaction on structure and chemistry of silicalite MFI type zeolite for its potential use as a seawater desalination membrane. Journal of Materials Chemistry, 2010, 20, 4675.	6.7	43
190	Simulation and optimization of pressure swing adsorption process for high-temperature air separation by perovskite sorbents. Chemical Engineering Journal, 2018, 354, 62-74.	6.6	43
191	Highly Efficient Alkylation Using Hydrophobic Sulfonic Acid-Functionalized Biochar as a Catalyst for Synthesis of High-Density Biofuels. ACS Sustainable Chemistry and Engineering, 2019, 7, 14973-14981.	3.2	43
192	Effect of thermal oxidation of activated carbon surface on its adsorption towards dibenzothiophene. Chemical Engineering Journal, 2009, 148, 242-247.	6.6	42
193	Effect of the Membrane Quality on Gas Permeation and Chemical Vapor Deposition Modification of MFI-Type Zeolite Membranes. Industrial & Engineering Chemistry Research, 2010, 49, 10026-10033.	1.8	42
194	Synthesis and Characterization of Nanosized Ceria Powders and High-Concentration Ceria Sols. Industrial & Engineering Chemistry Research, 2004, 43, 3019-3025.	1.8	41
195	Analysis of oxygen permeation through dense ceramic membranes with chemical reactions of finite rate. Chemical Engineering Science, 2009, 64, 172-179.	1.9	41
196	A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries. Frontiers of Chemical Science and Engineering, 2017, 11, 346-352.	2.3	41
197	Microwave heating synthesis of supported sorbents. Chemical Engineering Science, 1997, 52, 1563-1575.	1.9	40
198	Hydrogen separation through palladium–copper membranes on porous stainless steel with sol–gel derived ceria as diffusion barrier. Fuel, 2010, 89, 1274-1279.	3.4	40

#	Article	IF	CITATIONS
199	Characteristics of Ammonia Adsorption on Activated Alumina. Journal of Chemical & Engineering Data, 2010, 55, 5587-5593.	1.0	40
200	Carbon dioxide separation and dry reforming of methane for synthesis of syngas by a dualâ€phase membrane reactor. AICHE Journal, 2013, 59, 2207-2218.	1.8	40
201	Effects of sintering on properties of alumina microfiltration membranes. Journal of Membrane Science, 1999, 155, 309-314.	4.1	39
202	Ordered mesoporous membranes: Effects of support and surfactant removal conditions on membrane quality. Journal of Membrane Science, 2006, 279, 539-547.	4.1	39
203	Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: effects of high melting point organic binder. RSC Advances, 2016, 6, 40002-40009.	1.7	39
204	Oil tea shell derived porous carbon with an extremely large specific surface area and modification with MnO2 for high-performance supercapacitor electrodes. Applied Materials Today, 2017, 7, 47-54.	2.3	39
205	A novel pectin from Akebia trifoliata var. australis fruit peel and its use as a wall-material to coat curcumin-loaded zein nanoparticle. International Journal of Biological Macromolecules, 2020, 152, 40-49.	3.6	39
206	Effects of lithium dendrites on thermal runaway and gassing of LiFePO ₄ batteries. Sustainable Energy and Fuels, 2020, 4, 2342-2351.	2.5	39
207	Oxygen permeation through fluorite-type bismuth-yttrium-copper oxide membranes. Journal of Membrane Science, 1997, 132, 235-243.	4.1	38
208	High-Temperature Oxygen Sorption in a Fixed Bed Packed with Perovskite-Type Ceramic Sorbents. Industrial & Engineering Chemistry Research, 2003, 42, 4376-4381.	1.8	38
209	Thermal stability improvement of MFI-type zeolite membranes with doped zirconia intermediate layer. Microporous and Mesoporous Materials, 2007, 103, 302-308.	2.2	38
210	SrCo0.8Fe0.2O3â^δsorbent for high-temperature production of oxygen-enriched carbon dioxide stream. Fuel, 2010, 89, 1429-1434.	3.4	38
211	Hydrogen adsorption on metal-organic framework MOF-177. Tsinghua Science and Technology, 2010, 15, 363-376.	4.1	38
212	Accelerated Formation of THFâ^'H ₂ Clathrate Hydrate in Porous Media. Langmuir, 2010, 26, 8414-8418.	1.6	38
213	Synthesis and stability of zeolitic imidazolate framework-68 membranes. Microporous and Mesoporous Materials, 2015, 204, 99-105.	2.2	38
214	Catalytic properties of yttria doped bismuth oxide ceramics for oxidative coupling of methane. Applied Catalysis A: General, 1997, 159, 101-117.	2.2	37
215	Electric conductivity and oxygen permeability of modified cerium oxides. Journal of Materials Science, 2003, 38, 1073-1079.	1.7	37
216	Optimum operation of oxidative coupling of methane in porous ceramic membrane reactors. Catalysis Today, 2003, 82, 255-273.	2.2	37

#	Article	IF	Citations
217	Simulation of methane conversion to syngas in a membrane reactor: Part I A model including product oxidation. International Journal of Hydrogen Energy, 2008, 33, 2246-2253.	3.8	37
218	Synthesis of a phthalocyanine 2D covalent organic framework. CrystEngComm, 2013, 15, 7157.	1.3	37
219	Ceramic–carbonate dual-phase membrane with improved chemical stability for carbon dioxide separation at high temperature. Solid State Ionics, 2014, 263, 172-179.	1.3	37
220	Stability of La–Sr–Co–Fe Oxide–Carbonate Dual-Phase Membranes for Carbon Dioxide Separation at High Temperatures. Industrial & Day Engineering Chemistry Research, 2014, 53, 2432-2440.	1.8	37
221	Templateâ€Free Synthesis of Highly bâ€Oriented MFIâ€Type Zeolite Thin Films by Seeded Secondary Growth. Angewandte Chemie - International Edition, 2019, 58, 2519-2523.	7.2	37
222	Catalytic mixed conducting ceramic membrane reactors for methane conversion. Reaction Chemistry and Engineering, 2020, 5, 1868-1891.	1.9	37
223	Synthesis and oxygen-permeation properties of thin YSZ/Pd composite membranes. AICHE Journal, 2000, 46, 1521-1529.	1.8	36
224	A microscope FTIR mapping study on diffusion of hydrocarbons in single silicalite crystal particles. Microporous and Mesoporous Materials, 2000, 38, 207-220.	2.2	36
225	MCM-41 Overgrown on Y Composite Zeolite as Support of Pdâ^'Pt Catalyst for Hydrogenation of Polyaromatic Compounds. Industrial & Engineering Chemistry Research, 2007, 46, 4186-4192.	1.8	36
226	Xylene Vapor Permeation in MFI Zeolite Membranes Made by Templated and Template-Free Secondary Growth of Randomly Oriented Seeds: Effects of Xylene Activity and Microstructure. Industrial & Engineering Chemistry Research, 2018, 57, 16059-16068.	1.8	36
227	High-performance MFI zeolite hollow fiber membranes synthesized by double-layer seeding with variable temperature secondary growth. Journal of Membrane Science, 2021, 618, 118573.	4.1	36
228	Solâ^'Gel-Derived Alumina-Supported Copper Oxide Sorbent for Flue Gas Desulfurization. Industrial & Lamp; Engineering Chemistry Research, 1998, 37, 4675-4681.	1.8	35
229	A semi-empirical equation for oxygen nonstoichiometry of perovskite-type ceramics. Solid State Ionics, 2002, 150, 245-254.	1.3	35
230	Characteristics and desulfurization-regeneration properties of sol–gel-derived copper oxide on alumina sorbents. Separation and Purification Technology, 2004, 39, 167-179.	3.9	35
231	Oxygen sorption and desorption properties of Sr–Co–Fe oxide. Chemical Engineering Science, 2008, 63, 2211-2218.	1.9	35
232	Oxygen permeation performance of BaBiO3â~δceramic membranes. Journal of Membrane Science, 2009, 344, 281-287.	4.1	35
233	Partial Oxidation of Methane and Oxygen Permeation in SrCoFeO _{<i>x</i>} Membrane Reactor with Different Catalysts. Industrial & Diffe	1.8	35
234	Stability and Surface Catalytic Properties of Fluorite-Structured Yttria-Doped Bismuth Oxide under Reducing Environment. Journal of Catalysis, 1999, 182, 30-36.	3.1	34

#	Article	IF	Citations
235	Gas Diffusion and Microstructural Properties of Ordered Mesoporous Silica Fibers. Journal of Physical Chemistry B, 2005, 109, 13623-13629.	1.2	34
236	Kinetics of Carbon Dioxide Sorption on Perovskite-Type Metal Oxides. Industrial & Engineering Chemistry Research, 2006, 45, 6302-6310.	1.8	34
237	Protonic and electronic conductivities of terbium doped strontium cerates. Solid State Ionics, 2008, 178, 1804-1810.	1.3	34
238	Adsorption of Organic Compounds in Vapor, Liquid, and Aqueous Solution Phases on Hydrophobic Aerogels. Industrial & Engineering Chemistry Research, 2011, 50, 12177-12185.	1.8	34
239	ASI: Hydrothermal extraction and characterization of bioâ€crude oils from wet <i>chlorella sorokiniana</i> and <i>dunaliella tertiolecta</i> Environmental Progress and Sustainable Energy, 2013, 32, 910-915.	1.3	34
240	High H 2 permeable SAPOâ€34 hollow fiber membrane for high temperature propane dehydrogenation application. AICHE Journal, 2020, 66, e16278.	1.8	34
241	Sol-gel preparation and properties of Alumina adsorbents for gas separation. AICHE Journal, 1995, 41, 559-570.	1.8	33
242	Synthesis, Stability, and Sulfation Properties of Solâ^'Gel-Derived Regenerative Sorbents for Flue Gas Desulfurization. Industrial & Engineering Chemistry Research, 1996, 35, 1429-1437.	1.8	33
243	Characterization of asymmetric ceramic membranes by modified permporometry. Journal of Membrane Science, 1996, 116, 301-305.	4.1	33
244	Synergetic thermal effects for oxygen sorption and order?disorder transition on perovskite-type oxides. Solid State Ionics, 2005, 176, 89-96.	1.3	33
245	Aqueous phase adsorption of toluene in a packed and fluidized bed of hydrophobic aerogels. Chemical Engineering Journal, 2011, 168, 1201-1208.	6.6	33
246	Nickel substituted LiMn2O4 cathode with durable high-rate capability for Li-ion batteries. RSC Advances, 2013, 3, 18441.	1.7	33
247	Hydrogen-Catalyzed Acid Transformation for the Hydration of Alkenes and Epoxy Alkanes over Co–N Frustrated Lewis Pair Surfaces. Journal of the American Chemical Society, 2021, 143, 21294-21301.	6.6	33
248	Oxidative Coupling of Methane on Oxygen-Semipermeable Yttria-Doped Bismuth Oxide Ceramics in a Reducing Atmosphere. Industrial & Engineering Chemistry Research, 1997, 36, 277-283.	1.8	32
249	Effects of water vapor on gas permeation and separation properties of MFI zeolite membranes at high temperatures. AICHE Journal, 2012, 58, 153-162.	1.8	32
250	CO2 permeation through asymmetric thin tubular ceramic-carbonate dual-phase membranes. Journal of Membrane Science, 2018, 564, 73-81.	4.1	32
251	A novel study of sulfur-resistance for CO2 separation through asymmetric ceramic-carbonate dual-phase membrane at high temperature. Journal of Membrane Science, 2019, 581, 72-81.	4.1	32
252	Graphene oxide membranes with narrow inter-sheet galleries for enhanced hydrogen separation. Chemical Communications, 2019, 55, 3077-3080.	2.2	32

#	Article	IF	Citations
253	The tetracyclines removal by MgAl layered double oxide in the presence of phosphate or nitrate: Behaviors and mechanism exploration. Journal of Colloid and Interface Science, 2020, 578, 124-134.	5.0	32
254	A theoretical analysis on pore size change of porous ceramic membranes after modification. Journal of Membrane Science, 1993, 79, 55-64.	4.1	31
255	Microwave synthesis of mesoporous and microporous alumina powders. Journal of Materials Science Letters, 1997, 16, 1291-1294.	0.5	31
256	Beneficial effect of order–disorder phase transition on oxygen sorption properties of perovskite-type oxides. Solid State Ionics, 2007, 178, 83-89.	1.3	31
257	Enhancing selectivity of ZIF-8 membranes by short-duration postsynthetic ligand-exchange modification. Journal of Membrane Science, 2021, 619, 118743.	4.1	31
258	Preparation of spherical alumina and copper oxide coated alumina sorbents by improved sol–gel granulation process. Microporous and Mesoporous Materials, 2001, 42, 67-76.	2.2	30
259	Effect of metalâ€support interface on hydrogen permeation through palladium membranes. AICHE Journal, 2009, 55, 630-639.	1.8	30
260	Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection. Sensors and Actuators B: Chemical, 2010, 144, 260-266.	4.0	30
261	Asymmetric Thin Samarium Doped Cerium Oxide–Carbonate Dual-Phase Membrane for Carbon Dioxide Separation. Industrial & Dioxide Sep	1.8	30
262	Sequential simulation of dense oxygen permeation membrane reactor for hydrogen production from oxidative steam reforming of ethanol with ASPEN PLUS. International Journal of Hydrogen Energy, 2010, 35, 6691-6698.	3.8	29
263	Synthesis of ZIF-68 Membrane on a ZnO Modified α-Alumina Support by a Modified Reactive Seeding Method. Industrial & Engineering Chemistry Research, 2016, 55, 2831-2839.	1.8	29
264	Catalyst-free ceramic-carbonate dual phase membrane reactor for hydrogen production from gasifier syngas. Journal of Membrane Science, 2016, 520, 907-913.	4.1	29
265	Ultramicroporous carbon granules with narrow pore size distribution for efficient CH ₄ separation from coalâ€bed gases. AICHE Journal, 2021, 67, e17281.	1.8	29
266	Preparation and characterization of proton conducting terbium doped strontium cerate membranes. Journal of Membrane Science, 1999, 154, 143-153.	4.1	28
267	Separation properties of surface modified silica supported liquid membranes for divalent metal removal/recovery. Journal of Membrane Science, 2004, 229, 11-25.	4.1	28
268	Humidity independent hydrogen sulfide sensing response achieved with monolayer film of CuO nanosheets. Sensors and Actuators B: Chemical, 2020, 309, 127785.	4.0	28
269	CVD modification and vapor/gas separation properties of nanoporous alumina membranes. Journal of Membrane Science, 1999, 158, 235-241.	4.1	27
270	MOF-Encapsulating Metal–Acid Interfaces for Efficient Catalytic Hydrogenolysis of Biomass-Derived Aromatic Aldehydes. ACS Sustainable Chemistry and Engineering, 2021, 9, 11127-11136.	3.2	27

#	Article	IF	Citations
271	Removal of trace sulfur dioxide from gas stream by regenerative sorption processes. Separation and Purification Technology, 1998, 13, 65-77.	3.9	26
272	Synthesis of a benzothiazole nanoporous polymer for selective CO2 adsorption. RSC Advances, 2014, 4, 9669.	1.7	26
273	Strong binding site molarity of MOFs and its effect on CO2 adsorption. Microporous and Mesoporous Materials, 2015, 214, 242-245.	2.2	26
274	Recovery of Volatile Organic Solvent Compounds from Air by Ceramic Membranes. Industrial & Engineering Chemistry Research, 1997, 36, 3815-3820.	1.8	25
275	Solâ^'Gel Synthesis of Silicalite/γ-Alumina Granules. Industrial & Engineering Chemistry Research, 2000, 39, 4944-4948.	1.8	25
276	Synthesis and Characterization of Suspensionâ€Derived, Porous Ionâ€Conducting Ceramic Membranes. Journal of the American Ceramic Society, 1999, 82, 2641-2646.	1.9	25
277	Counter diffusion self-assembly synthesis of nanostructured silica membranes. Journal of Membrane Science, 2006, 282, 266-275.	4.1	25
278	Mechanism of CO2 adsorption on Mg/DOBDC with elevated CO2 loading. Fuel, 2016, 181, 340-346.	3.4	25
279	Lithium Ion Batteries with Alumina Separator for Improved Safety. Journal of the Electrochemical Society, 2017, 164, A1184-A1191.	1.3	25
280	Ethanol extracts from Cinnamomum camphora seed kernel: Potential bioactivities as affected by alkaline hydrolysis and simulated gastrointestinal digestion. Food Research International, 2020, 137, 109363.	2.9	25
281	Modified CVD of nanoscale structures in and EVD of thin layers on porous ceramic membranes. Journal of the European Ceramic Society, 1991, 8, 59-70.	2.8	24
282	Cyclic CVD Modification of Straight Pore Alumina Membranes. Langmuir, 2003, 19, 7307-7314.	1.6	24
283	Reactivity of Brönsted acid ionic liquids as dual solvent and catalyst for Fischer esterifications. Korean Journal of Chemical Engineering, 2009, 26, 666-672.	1.2	24
284	Selective CO ₂ adsorption in a porphyrin polymer with benzimidazole linkages. RSC Advances, 2015, 5, 10960-10963.	1.7	24
285	Functionalized Biochar with Superacidity and Hydrophobicity as a Highly Efficient Catalyst in the Synthesis of Renewable High-Density Fuels. ACS Sustainable Chemistry and Engineering, 2020, 8, 7785-7794.	3.2	24
286	Sol–gel synthesis and characterization of mesoporous yttria-stabilized zirconia membranes with graded pore structure. Journal of Materials Science, 2011, 46, 7056-7066.	1.7	23
287	Designing hierarchical porous features of ZSM-5 zeolites via Si/Al ratio and their dynamic behavior in seawater ion complexes. Microporous and Mesoporous Materials, 2013, 173, 78-85.	2.2	23
288	Effect of substrate curvature on microstructure and gas permeability of hollow fiber MFI zeolite membranes. AICHE Journal, 2018, 64, 3419-3428.	1.8	23

#	Article	IF	CITATIONS
289	Equilibrium of oxygen sorption on perovskite-type lanthanum cobaltite sorbent. AICHE Journal, 2003, 49, 793-798.	1.8	22
290	Sol?gel synthesis and properties of unsupported and supported mesoporous ceria membranes. Journal of Membrane Science, 2005, 256, 89-89.	4.1	22
291	Fixed-bed performance for production of oxygen-enriched carbon dioxide stream by perovskite-type ceramic sorbent. Separation and Purification Technology, 2006, 49, 27-35.	3.9	22
292	Preparation of Thin Palladium Composite Membranes and Application to Hydrogen/Nitrogen Separation. Chinese Journal of Chemical Engineering, 2007, 15, 643-647.	1.7	22
293	Effects of Oxygen Vacancy Order–Disorder Phase Transition on Air Separation by Perovskite Sorbents. Industrial & Description of the Company of the Compan	1.8	22
294	Experimental and modeling study on tubular dense membranes for oxygen permeation. AICHE Journal, 1999, 45, 2519-2526.	1.8	21
295	Synthesis and properties of copper and samarium doped yttria-bismuth oxide powders and membranes. Journal of Materials Science, 2001, 36, 1271-1276.	1.7	21
296	Title is missing!. Journal of Materials Science, 2003, 38, 979-985.	1.7	21
297	Effect of dopant addition on oxygen sorption properties of La-Sr-Co-Fe-O perovskite type oxide. Adsorption, 2006, 12, 329-338.	1.4	21
298	Counter diffusion self assembly synthesis of ordered mesoporous silica membranes in straight pore supports. Microporous and Mesoporous Materials, 2010, 129, 228-237.	2.2	21
299	Effects of synthesis conditions on MFI zeolite membrane quality and catalytic cracking deposition modification results. Microporous and Mesoporous Materials, 2011, 142, 481-488.	2.2	21
300	Polymer-assisted chemical solution approach to YVO4:Eu nanoparticle networks. Journal of Materials Chemistry, 2012, 22, 5835.	6.7	21
301	YBaCo4O7+ \hat{l} sorbent for oxygen-enriched carbon dioxide stream production at a low-temperature. Fuel, 2012, 94, 191-196.	3.4	21
302	Adsorption of Berberine Hydrochloride, Ligustrazine Hydrochloride, Colchicine, and Matrine Alkaloids on Macroporous Resins. Journal of Chemical & Engineering Data, 2013, 58, 1271-1279.	1.0	21
303	Electrode-supported thin \hat{l}_{\pm} -alumina separators for lithium-ion batteries. Journal of Power Sources, 2016, 305, 209-216.	4.0	21
304	Highly gas permeable, ultrathin Teflon AF2400/ \hat{l}^3 -alumina composite hollow fiber membranes for dissolved gas analysis. Journal of Membrane Science, 2017, 540, 243-250.	4.1	21
305	Double-metal cyanide as an acid and hydrogenation catalyst for the highly selective ring-rearrangement of biomass-derived furfuryl alcohol to cyclopentenone compounds. Green Chemistry, 2020, 22, 2549-2557.	4.6	21
306	Sol-Gel Synthesis and Gas Adsorption Properties of CuCl Modified Mesoporous Alumina. Journal of Sol-Gel Science and Technology, 1998, 11, 185-195.	1.1	20

#	Article	IF	Citations
307	Hydrophobic Zeolites as Adsorbents for Removal of Volatile Organic Compounds from Air. Environmental Technology (United Kingdom), 1998, 19, 941-948.	1.2	20
308	Comparative Study on Oxygen Permeation and Oxidative Coupling of Methane on Disk-Shaped and Tubular Dense Ceramic Membrane Reactors. Industrial & Engineering Chemistry Research, 2001, 40, 5908-5916.	1.8	20
309	Simulation of methane conversion to syngas in a membrane reactor. Part IIModel predictions. International Journal of Hydrogen Energy, 2008, 33, 2501-2506.	3.8	20
310	Adsorption Equilibrium, Kinetics, and Enthalpy of N ₂ O on Zeolite 4A and 13X. Journal of Chemical & Engineering Data, 2010, 55, 3312-3317.	1.0	20
311	Sustainable low temperature desalination: A case for renewable energy. Journal of Renewable and Sustainable Energy, 2011, 3, .	0.8	20
312	Adsorption and separation of CH4/H2 in MIL-101s by molecular simulation study. Chemical Engineering Science, 2013, 98, 246-254.	1.9	20
313	Facile Preparation of Biomass-Derived Mesoporous Carbons for Highly Efficient and Selective SO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 14929-14937.	1.8	20
314	CVD of solid oxides in porous media for ceramic membrane preparation or modification. Explicit solutions for deposition characteristics. Chemical Engineering Science, 1994, 49, 3909-3922.	1.9	19
315	Effects of Synthesis Conditions on Macroscopic and Microscopic Properties of Ordered Mesoporous Silica Fibers. Chemistry of Materials, 2003, 15, 2033-2039.	3.2	19
316	Improved Sorbent for High-Temperature Production of Oxygen-Enriched Carbon Dioxide Stream. Industrial & Engineering Chemistry Research, 2007, 46, 6025-6031.	1.8	19
317	Low temperature process to recover impaired waters. Desalination and Water Treatment, 2010, 20, 281-290.	1.0	19
318	Structure and magnetotransport properties of epitaxial nanocomposite La0.67Ca0.33MnO3:SrTiO3 thin films grown by a chemical solution approach. Applied Physics Letters, 2012, 100, 082403.	1.5	19
319	Biodiesel production from low cost and renewable feedstock. Open Engineering, 2013, 3, .	0.7	19
320	Thin oriented AFI zeolite membranes for molecular sieving separation. Microporous and Mesoporous Materials, 2014, 186, 80-83.	2.2	19
321	Carbon dioxide permeation through ceramic-carbonate dual-phase membrane-effects of sulfur dioxide. Journal of Membrane Science, 2017, 540, 477-484.	4.1	19
322	B-oriented MFI zeolite membranes for xylene isomer separation - Effect of xylene activity on separation performance. Journal of Membrane Science, 2022, 652, 120492.	4.1	19
323	Evolution of pore size distribution and average pore size of porous ceramic membranes during modification by counter-diffusion chemical vapor deposition. Journal of Membrane Science, 1997, 124, 27-42.	4.1	18
324	High temperature air separation by perovskite-type oxide sorbents–Heat effect minimization. Chemical Engineering Science, 2008, 63, 5870-5875.	1.9	18

#	Article	IF	CITATIONS
325	Electrical conductivity and oxygen permeation properties of SrCoFeOx membranes. Solid State Ionics, 2010, 180, 1633-1639.	1.3	18
326	Optimization of mesoporous carbons for efficient adsorption of berberine hydrochloride from aqueous solutions. Journal of Colloid and Interface Science, 2014, 424, 104-112.	5.0	18
327	Strategy for stabilizing noble metal nanoparticles without sacrificing active sites. Chemical Communications, 2019, 55, 6846-6849.	2.2	18
328	Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers. Journal of Materials Chemistry A, 2020, 8, 20677-20686.	5.2	18
329	Beam-sensitive metal-organic framework structure determination by microcrystal electron diffraction. Ultramicroscopy, 2020, 216, 113048.	0.8	18
330	Analysis of liquid chromatography with nonuniform crystallite particles. AICHE Journal, 1990, 36, 1569-1576.	1.8	17
331	Structural and Mechanical Properties of Nanostructured Granular Alumina Catalysts. Industrial & Lamp; Engineering Chemistry Research, 2003, 42, 442-447.	1.8	17
332	Synthesis of Ru-Ni Core-Shell Nanoparticles for Potential Sensor Applications. IEEE Sensors Journal, 2008, 8, 730-734.	2.4	17
333	Integrated PV-thermal system for desalination and power production. Desalination and Water Treatment, 2011, 36, 129-140.	1.0	17
334	Desalination at low temperatures: an exergy analysis. Desalination and Water Treatment, 2012, 40, 272-281.	1.0	17
335	Coupling effects of oxygen surface exchange kinetics and membrane thickness on chemically induced stresses in perovskite-type membranes. Solid State Ionics, 2012, 212, 55-65.	1.3	17
336	Pore structure characterization of supported polycrystalline zeolite membranes by positron annihilation spectroscopy. Journal of Membrane Science, 2015, 477, 41-48.	4.1	17
337	Poisoning Effect of H ₂ S on CO ₂ Permeation of Samarium-Doped-Ceria/Carbonate Dual-Phase Membrane. Industrial & Engineering Chemistry Research, 2017, 56, 14662-14669.	1.8	17
338	Fabrication of dual-hollow heterostructure of Ni2CoS4 sphere and nanotubes as advanced electrode for high-performance flexible all-solid-state supercapacitors. Journal of Colloid and Interface Science, 2020, 564, 313-321.	5.0	17
339	Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes. Journal of Materials Research, 2020, 35, 1205-1213.	1.2	17
340	Synthesis and characterization of silicalite powders and membranes with micro–meso bimodal pores. Journal of Materials Science, 2007, 42, 320-327.	1.7	16
341	Effect of Isomorphous Metal Substitution in Zeolite Framework on Pervaporation Xylene-Separation Performance of MFI-Type Zeolite Membranes. Industrial & Engineering Chemistry Research, 2010, 49, 809-816.	1.8	16
342	Synthesis and water vapor separation properties of pure silica and aluminosilicate MCM-48 membranes. Separation and Purification Technology, 2011, 76, 261-267.	3.9	16

#	Article	IF	CITATIONS
343	Autothermal reforming of ethanol in dense oxygen permeation membrane reactor. Catalysis Today, 2016, 264, 214-220.	2.2	16
344	Robust Ultramicroporous Metal–Organic Framework with Rich Hydroxyl-Decorated Channel Walls for Highly Selective Noble Gas Separation. Journal of Chemical & Engineering Data, 2020, 65, 4018-4023.	1.0	16
345	Chemical immobilization of amino acids into robust metal–organic framework for efficient SO ₂ removal. AICHE Journal, 2021, 67, e17300.	1.8	16
346	Effect of H-Bonding on BrÃ, nsted Acid Ionic Liquids Catalyzed In Situ Transesterification of Wet Algae. ACS Sustainable Chemistry and Engineering, 2020, 8, 4647-4657.	3.2	15
347	Water-gas shift reaction in ceramic-carbonate dual-phase membrane reactor at high temperatures and pressures. Chemical Engineering Journal, 2022, 448, 137652.	6.6	15
348	Cuprous-Chloride-Modified Nanoporous Alumina Membranes for Ethyleneâ^Ethane Separation. Industrial & Capacitan Chemistry Research, 1999, 38, 2292-2298.	1.8	14
349	Highly CO2 perm-selective metal-organic framework membranes through CO2 annealing post-treatment. Journal of Membrane Science, 2018, 555, 97-104.	4.1	14
350	Efficient screening of novel adsorbents for coalbed methane recovery. Journal of Colloid and Interface Science, 2020, 565, 131-141.	5.0	14
351	CO2-permselective membrane reactor for steam reforming of methane. Journal of Membrane Science, 2022, 641, 119914.	4.1	14
352	Synthesis of vertically aligned carbon nanotube films on macroporous alumina substrates. Microporous and Mesoporous Materials, 2005, 81, 185-189.	2.2	13
353	Facile synthesis of ordered mesoporous silica with high \hat{I}^3 -Fe2O3 loading via sol-gel process. Journal of Materials Science, 2008, 43, 6359-6365.	1.7	13
354	Autothermal Reforming of Methane in a Proton-Conducting Ceramic Membrane Reactor. Industrial & Lamp; Engineering Chemistry Research, 2011, 50, 12426-12432.	1.8	13
355	Improved synthesis of trigone trimer cluster metal organic framework MIL-100Al by a later entry of methyl groups. Chemical Communications, 2016, 52, 725-728.	2.2	13
356	Simultaneous Conversion of C ₅ and C ₆ Sugars into Methyl Levulinate with the Addition of 1,3,5†rioxane. ChemSusChem, 2019, 12, 4400-4404.	3 . 6	13
357	Electrode-coated alumina separators for lithium-ion batteries - effect of particle size and distribution of alumina powders. Powder Technology, 2019, 353, 230-237.	2.1	13
358	Enhancement of Catalytic Activity by \hat{I}^3 -NiOOH for the Production of Methyl Lactate from Sugars in Near-Critical Methanol Solutions. Industrial & Engineering Chemistry Research, 2019, 58, 3659-3665.	1.8	13
359	Facile one-step synthesis of N-doped carbon nanotubes/N-doped carbon nanofibers hierarchical composites by chemical vapor deposition. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	13
360	Mixed-conducting ceramic-carbonate dual-phase membranes: Gas permeation and counter-permeation. Journal of Membrane Science, 2020, 605, 118093.	4.1	13

#	Article	IF	CITATIONS
361	Suppressing lithium dendrite growth on lithium-ion/metal batteries by a tortuously porous î ³ -alumina separator. Electrochimica Acta, 2022, 421, 140478.	2.6	13
362	Palladium-Modified Yttria-Stabilized Zirconia Membranes. Industrial & Engineering Chemistry Research, 2000, 39, 2124-2126.	1.8	12
363	Effects of microstructure on oxygen transport in perovskite-type oxides. Journal of Materials Science, 2006, 41, 4865-4870.	1.7	12
364	Liquid Diffusion and Adsorption of Aqueous Ethanol, Propanols, and Butanols in Silicalite by HPLC. ACS Symposium Series, 1988, , 452-466.	0.5	11
365	Hydrogenation of mâ€dinitrobenzene to mâ€phenylenediamine over La ₂ O ₃ â€promoted Ni/SiO ₂ catalysts. Journal of Chemical Technology and Biotechnology, 2009, 84, 1381-1389.	1.6	11
366	High temperature sorption of carbon dioxide on perovskite-type metal oxides. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 276-280.	2.7	11
367	Adsorption of Short-Chain Alcohols by Hydrophobic Silica Aerogels. Industrial & Engineering Chemistry Research, 2013, 52, 18379-18385.	1.8	11
368	A N-doped graphene–cobalt nickel sulfide aerogel as a sulfur host for lithium–sulfur batteries. RSC Advances, 2019, 9, 32247-32257.	1.7	11
369	Highly Controllable Hydrogenative Ring Rearrangement and Complete Hydrogenation Of Biobased Furfurals over Pd/La ₂ B ₂ O ₇ (B=Ti, Zr, Ce). ChemCatChem, 2021, 13, 4549-4556.	1.8	11
370	On the kinetic study of electrochemical vapour deposition. Solid State Ionics, 1991, 47, 331-336.	1.3	10
371	Functionalised mesoporous silica membrane for the separation of carbon dioxide. International Journal of Environmental Technology and Management, 2004, 4, 21.	0.1	10
372	Characterization of zirconia modified porous stainless steel supports for Pd membranes. Journal of Porous Materials, 2006, 13, 419-426.	1.3	10
373	Synthesis of ordered mesoporous silica membranes containing iron oxide nanocrystallites. Journal of Membrane Science, 2008, 312, 186-192.	4.1	10
374	Direct Evidence of the Evolutionary Mechanism of Zeolite Monolayers on the Substrate Surface in a Hydrothermal Reaction. Langmuir, 2010, 26, 5895-5900.	1.6	10
375	Fabrication of <scp>AC</scp> @ <scp>ZSM</scp> â€5 coreâ€shell particles and their performance in Fischer–Tropsch synthesis. Journal of Chemical Technology and Biotechnology, 2013, 88, 2133-2140.	1.6	10
376	Ultrafast Semiâ€Solid Processing of Highly Durable ZIFâ€8 Membranes for Propylene/Propane Separation. Angewandte Chemie, 2020, 132, 22093-22098.	1.6	10
377	High-pressure CO2 permeation properties and stability of ceramic-carbonate dual-phase membranes. Journal of Membrane Science, 2022, 646, 120249.	4.1	10
378	Double-layer ceramic-carbonate hollow fiber membrane with superior mechanical strength for CO2 separation. Journal of Membrane Science, 2022, 658, 120701.	4.1	10

#	Article	IF	Citations
379	An improved analysis on kinetics of electrochemical vapor deposition. Solid State Ionics, 1994, 73, 255-263.	1.3	9
380	MOCVD synthesis of yttria doped perovskite type SrCeO3 thin films. Materials Letters, 1998, 36, 44-47.	1.3	9
381	Detection of lipid bilayer membranes formed on silica fibers by double-long period fiber grating laser refractometry. Sensors and Actuators B: Chemical, 2010, 150, 734-741.	4.0	9
382	Terbium doped strontium cerate enabled long period fiber gratings for high temperature sensing of hydrogen. Sensors and Actuators B: Chemical, 2011, 152, 214-219.	4.0	9
383	A Stable Zn-Based Metal–Organic Framework as an Efficient Catalyst for Carbon Dioxide Cycloaddition and Alcoholysis at Mild Conditions. Catalysis Letters, 2020, 150, 1408-1417.	1.4	9
384	Nanometer-Thick Films of Aligned ZnO Nanowires Sensitized with Au Nanoparticles for Few-ppb-Level Acetylene Detection. ACS Applied Nano Materials, 2020, 3, 9174-9184.	2.4	9
385	Gas Transport Properties of Teflon AF2400/Ceramic Composite Hollow Fiber Membranes in Dissolved-Gas-in-Oil Extraction. Industrial & Engineering Chemistry Research, 2020, 59, 5392-5401.	1.8	9
386	High Dietary Intervention of Lauric Triglyceride Might be Harmful to Its Improvement of Cholesterol Metabolism in Obese Rats. Journal of Agricultural and Food Chemistry, 2021, 69, 4453-4463.	2.4	9
387	Combined removal of SO ₂ and no using solâ€gelâ€derived copper oxide coated alumina sorbents/catalysts. Environmental Technology (United Kingdom), 2003, 24, 1087-1095.	1.2	8
388	DIRECT SYNTHESIS OF RU-NI NANOPARTICLES WITH CORE-AND-SHELL STRUCTURE. Chemical Engineering Communications, 2007, 194, 780-786.	1.5	8
389	Transient Oxygen Permeation and Surface Catalytic Properties of Lanthanum Cobaltite Membrane under Oxygen–Methane Gradient. Industrial & Engineering Chemistry Research, 2012, 51, 12917-12925.	1.8	8
390	Synthesis of a Polyimide Porous Porphyrin Polymer for Selective CO _{2} Capture. Journal of Chemistry, 2015, 2015, 1-7.	0.9	8
391	Safe Li-ion batteries enabled by completely inorganic electrode-coated silicalite separators. Sustainable Energy and Fuels, 2020, 4, 5783-5794.	2.5	8
392	Zeolite Membrane Separations. , 0, , 307-327.		7
393	Surface roughness and chemical properties of porous inorganic films. Thin Solid Films, 2015, 591, 111-118.	0.8	7
394	Beneficial Effect of Water on the Catalytic Conversion of Sugars to Methyl Lactate in Near-Critical Methanol Solutions. Industrial & Engineering Chemistry Research, 2019, 58, 12451-12458.	1.8	7
395	An On-Line Transient Study on Gassing Mechanism of Lithium Titanate Batteries. Journal of the Electrochemical Society, 2019, 166, A4150-A4157.	1.3	7
396	Performance of electrode-supported silica membrane separators in lithium-ion batteries. Sustainable Energy and Fuels, 2020, 4, 1254-1264.	2.5	7

#	Article	IF	CITATIONS
397	Teflon AF2400 Hollow Fiber Membrane Contactor for Dissolved Gas-in-Oil Extraction: Mass Transfer Characteristics. Industrial & Engineering Chemistry Research, 2020, 59, 16795-16804.	1.8	7
398	Catalyst-Free Ceramic–Carbonate Dual-Phase Membrane Reactors for High-Temperature Water Gas Shift: A Simulation Study. Industrial & Engineering Chemistry Research, 2021, 60, 3581-3588.	1.8	7
399	High-Hole-Mobility Metal–Organic Framework as Dopant-Free Hole Transport Layer for Perovskite Solar Cells. Nanoscale Research Letters, 2022, 17, 6.	3.1	7
400	Delicate Tuning of the Ni/Co Ratio in Bimetal Layered Double Hydroxides for Efficient N ₂ Electroreduction. ChemSusChem, 2022, 15, e202200127.	3.6	7
401	Synthesis of ZIF-8 Membranes on Î ³ -Alumina Supports for Separation of Propylene/Propane Gas Mixture. Industrial & Description of Propylene Propane Gas Mixture.	1.8	7
402	Bifunctional Role of Hydrogen in Aqueous Hydrogenative Ring Rearrangement of Furfurals over Co@Co-NC. ACS Sustainable Chemistry and Engineering, 2022, 10, 7321-7329.	3.2	7
403	A Comparative Study of Adsorption and Diffusion of Vapor Alcohols and Alcohols From Aqueous Solutions in Silicalite. Studies in Surface Science and Catalysis, 1989, 49, 877-886.	1.5	6
404	Cross-Flow Filtration of Synthetic Electroplating Wastewater by Ceramic Membranes Using High Frequency Backpulsing. Environmental Technology (United Kingdom), 2000, 21, 699-712.	1.2	6
405	Preparation of Mesoporous Silica-Supported Palladium Catalysts for Biofuel Upgrade. Journal of Nanotechnology, 2012, 2012, 1-6.	1.5	6
406	Metal-Oxide Nanoparticles with a Dopant-Segregation-Induced Core–Shell Structure: Gas Sensing Properties. Journal of Physical Chemistry C, 2018, 122, 21322-21329.	1.5	6
407	Effect of anion co-existence on ionic organic pollutants removal over Ca based layered double hydroxide. Journal of Colloid and Interface Science, 2019, 534, 440-446.	5.0	6
408	Nickel Nanoparticles with Narrow Size Distribution Confined in Nitrogen-Doped Carbon for Efficient Reduction of CO2 to CO. Catalysis Letters, 2022, 152, 600-609.	1.4	6
409	Sol-gel preparation of nanostructured adsorbents. Studies in Surface Science and Catalysis, 1999, 120, 653-686.	1.5	5
410	Synthesis and Characterization of LIX-84 Noncovalently Bound Silica Sorbents for Metal-Ion Recovery. Industrial & Description (2003), 42, 1253-1260.	1.8	5
411	Ceramic Proton Conductors. , 2006, , 49-76.		5
412	Gas permeation and diffusion in small and intermediate pore zeolite membranes. Studies in Surface Science and Catalysis, 2007, , 847-854.	1.5	5
413	Ordered mesoporous silica prepared by quiescent interfacial growth method - effects of reaction chemistry. Nanoscale Research Letters, 2013, 8, 484.	3.1	5
414	Templateâ€Free Synthesis of Highly bâ€Oriented MFIâ€Type Zeolite Thin Films by Seeded Secondary Growth. Angewandte Chemie, 2019, 131, 2541-2545.	1.6	5

#	Article	IF	Citations
415	Selective Synthesis of Bioderived Dibenzofurans and Bicycloalkanes from a Cellulose-Based Route. ACS Sustainable Chemistry and Engineering, 2021, 9, 6748-6755.	3.2	5
416	CVD MODIFICATION OF CERAMIC MEMBRANES : SIMULATION AND PRELIMINARY RESULTS. Journal De Physique Colloque, 1989, 50, C5-91-C5-91.	0.2	5
417	Synergistic effect of NiCo alloy and NiCoS integrated with N doped carbon for superior rate and ultralong-lifespan lithium sulfur batteries. Journal of Alloys and Compounds, 2022, 905, 164175.	2.8	5
418	Polymeric Adsorbent for Radium Removal from Groundwater. Adsorption, 2005, 11, 805-809.	1.4	4
419	Inorganic Membranes for Gas Separation and Purification. Membrane, 2006, 31, 170-173.	0.0	4
420	Membrane reactors for hydrogen production from coal., 2015,, 145-186.		4
421	Pyrolysis and Gasification Characteristics of Galdieria sulphuraria Microalgae. Bioenergy Research, 2023, 16, 611-621.	2.2	4
422	Dense open metal sites in a microporous metal–organic framework for deep desulfurization with recordâ€high sulfur dioxide storage density. AICHE Journal, 2022, 68, .	1.8	4
423	Effect of microstructure of MFI-type zeolite membranes on separation of xylene isomers. Studies in Surface Science and Catalysis, 2007, 170, 967-974.	1.5	3
424	Study on the alcoholysis of isoflavone catalyzed by ionic liquids. Reaction Kinetics and Catalysis Letters, 2008, 95, 257-264.	0.6	3
425	Synthesis and characterization of ordered meso-macro-porous silica membranes on a porous alumina support. Tsinghua Science and Technology, 2010, 15, 377-384.	4.1	3
426	Ordered mesoporous silica fibers: effects of synthesis conditions on fiber morphology and length. Journal of Materials Science, 2013, 48, 7042-7054.	1.7	3
427	Fabrication of vertically aligned N-doped carbon nanotube arrays on vermiculite by horizonal chemical vapor deposition. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 202-211.	1.0	3
428	The influence of seawater ions on the structural features of MFI, FAU and LTA zeolites. , $2010, \dots$		2
429	Preparation Chemistry of Inorganic Membranes. , 2011, , 507-523.		2
430	Xylene Separation Performance of Composition-Gradient MFI Zeolite Membranes. Membrane Science and Technology, 2011, 14, 195-212.	0.5	2
431	Novel Pd-BTP/SiO2as an Effective Heterogeneous Catalyst for Heck Reactions. Chemical Engineering Communications, 2016, 203, 488-495.	1.5	2
432	Optimization of [Bmim][HSO 4] atalyzed Transesterification of Camelina Oil. Chemical Engineering and Technology, 2020, 43, 403-411.	0.9	2

#	Article	IF	CITATIONS
433	Large scale synthesis of carbon nanopearl chains by chemical vapor deposition. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 773-778.	1.0	2
434	Sorbent-based oxygen separation with YBC114 for energy storage systems. Chemical Engineering Journal, 2022, 435, 134884.	6.6	2
435	Hydrogen energy and solid state fuel cells. lonics, 1998, 4, 444-450.	1.2	1
436	Reply to "Comment on â€~Gas Diffusion and Microstructural Properties of Ordered Mesoporous Silica Fibers'â€, Journal of Physical Chemistry B, 2006, 110, 11606-11606.	1.2	1
437	Prediction of Arsenic Removal by Adsorptive Media: Comparison of Field and Laboratory Studies. , 0, , 227-268.		1
438	Additions and corrections published in 2013. Chemical Communications, 2013, 49, 11812.	2.2	1
439	Defect-sealing synthesis of vertically oriented ordered mesoporous silica membranes. Journal of Materials Science, 2014, 49, 905-914.	1.7	1
440	Conceptual process and analysis of water-gas-shift membrane reactor. Journal of Shanghai Jiaotong University (Science), 2015, 20, 228-233.	0.5	1
441	Controllable synthesis of N-doped aligned carbon nanotubes from melamine-based carbon by water-assisted chemical vapor deposition. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 729-735.	1.0	1
442	Synergistic engineering of fluorine doping and oxygen vacancies towards high-energy and long-lifespan flexible solid-state asymmetric supercapacitor. Ionics, 2021, 27, 2649-2658.	1.2	1
443	Counter diffusion self assembly synthesis of ordered mesoporous silica membranes. Studies in Surface Science and Catalysis, 2007, 170, 363-370.	1.5	0
444	Correction to "Effects of Oxygen Vacancy Order–Disorder Phase Transition on Air Separation by Perovskite Sorbents― Industrial & Engineering Chemistry Research, 2019, 58, 505-505.	1.8	0
445	Ziegler–Natta Catalysis. , 2005, , 3247-3259.		O