
Katarzyna MiÅ,owska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4335063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spheroids as a Type of Three-Dimensional Cell Cultures—Examples of Methods of Preparation and the Most Important Application. International Journal of Molecular Sciences, 2020, 21, 6225.	4.1	162
2	Dendrimers and hyperbranched structures for biomedical applications. European Polymer Journal, 2019, 119, 61-73.	5.4	98
3	How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. Journal of Controlled Release, 2014, 181, 40-52.	9.9	93
4	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. International Journal of Pharmaceutics, 2015, 485, 261-269.	5.2	64
5	Viologen-Phosphorus Dendrimers Inhibit α-Synuclein Fibrillation. Molecular Pharmaceutics, 2013, 10, 1131-1137.	4.6	63
6	Phosphorus-containing dendrimers against α-synuclein fibril formation. International Journal of Biological Macromolecules, 2012, 50, 1138-1143.	7.5	56
7	Interaction between PAMAM-NH2 G4 dendrimer and 5-fluorouracil in aqueous solution. International Journal of Pharmaceutics, 2011, 408, 266-270.	5.2	55
8	PAMAM G4 dendrimers affect the aggregation of α-synuclein. International Journal of Biological Macromolecules, 2011, 48, 742-746.	7.5	52
9	Reactive oxygen species and DNA damage after ultrasound exposure. New Biotechnology, 2007, 24, 263-267.	2.7	48
10	Dendrimers—revolutionary drugs for infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 469-491.	6.1	41
11	Carbosilane dendrimers inhibit α-synuclein fibrillation and prevent cells from rotenone-induced damage. International Journal of Pharmaceutics, 2015, 484, 268-275.	5.2	39
12	Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics. ACS Sustainable Chemistry and Engineering, 2020, 8, 18354-18365.	6.7	35
13	Mechanism of Cationic Phosphorus Dendrimer Toxicity against Murine Neural Cell Lines. Molecular Pharmaceutics, 2013, 10, 3484-3496.	4.6	33
14	Nanoparticle corona for proteins: mechanisms of interaction between dendrimers and proteins. Colloids and Surfaces B: Biointerfaces, 2015, 134, 377-383.	5.0	31
15	Chitosan-Functionalized Graphene Nanocomposite Films: Interfacial Interplay and Biological Activity. Materials, 2020, 13, 998.	2.9	31
16	Cytotoxic activity of genistein-8-C-glucoside form Lupinus luteus L. and genistein against human SK-OV-3 ovarian carcinoma cell line. Medicinal Chemistry Research, 2017, 26, 64-73.	2.4	28
17	Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface–Interface Composition and the Framework Crystallinity. ACS Applied Materials & Interfaces, 2015, 7, 19994-20003.	8.0	27
18	Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. Colloids and Interfaces, 2017, 1, 6.	2.1	26

#	Article	IF	CITATIONS
19	Synthesis, characterization and biological properties of new hybrid carbosilane–viologen–phosphorus dendrimers. RSC Advances, 2015, 5, 25942-25958.	3.6	24
20	In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage. International Journal of Pharmaceutics, 2014, 474, 42-49.	5.2	21
21	Haemolytic activity and cellular toxicity of SBA-15-type silicas: elucidating the role of the mesostructure, surface functionality and linker length. Journal of Materials Chemistry B, 2015, 3, 2714-2724.	5.8	21
22	Synergistic effect of ultrasound and phthalocyanines on nucleated erythrocytes in vitro. Ultrasound in Medicine and Biology, 2005, 31, 1707-1712.	1.5	20
23	Dendrimers complexed with HIV-1 peptides interact with liposomes and lipid monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 907-915.	2.6	20
24	Antimicrobial Effect of Chitosan Films on Food Spoilage Bacteria. International Journal of Molecular Sciences, 2021, 22, 5839.	4.1	20
25	Promising Low-Toxicity of Viologen-Phosphorus Dendrimers against Embryonic Mouse Hippocampal Cells. Molecules, 2013, 18, 12222-12240.	3.8	19
26	Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line. Cellular and Molecular Biology Letters, 2013, 18, 459-78.	7.0	18
27	Cytotoxicity of α-Pyrrolidinophenones: an Impact of α-Aliphatic Side-chain Length and Changes in the Plasma Membrane Fluidity. Neurotoxicity Research, 2018, 34, 613-626.	2.7	17
28	Enhancement of ultrasonically induced cell damage by phthalocyanines in vitro. Ultrasonics, 2008, 48, 724-730.	3.9	16
29	Interaction of α-synuclein with Rhus typhina tannin – Implication for Parkinson's disease. Colloids and Surfaces B: Biointerfaces, 2017, 155, 159-165.	5.0	16
30	Interference of cationic polymeric nanoparticles with clinical chemistry tests—Clinical relevance. International Journal of Pharmaceutics, 2014, 473, 599-606.	5.2	15
31	Impact of mesoporous silica surface functionalization on human serum albumin interaction, cytotoxicity and antibacterial activity. Microporous and Mesoporous Materials, 2016, 231, 47-56.	4.4	15
32	Generation-dependent effect of PAMAM dendrimers on human insulin fibrillation and thermal stability. International Journal of Biological Macromolecules, 2016, 82, 54-60.	7.5	15
33	Effect of ultrasound on nucleated erythrocytes. Ultrasound in Medicine and Biology, 2005, 31, 129-134.	1.5	14
34	Oleochemicalâ€Tethered SBAâ€15â€Type Silicates with Tunable Nanoscopic Order, Carboxylic Surface, and Hydrophobic Framework: Cellular Toxicity, Hemolysis, and Antibacterial Activity. Chemistry - A European Journal, 2014, 20, 9596-9606.	3.3	14
35	Interaction of PAMAM dendrimers with bovine insulin depends on nanoparticle end-groups. Journal of Luminescence, 2015, 162, 87-91.	3.1	12
36	Cationic Carbosilane Dendrimers Prevent Abnormal α-Synuclein Accumulation in Parkinson's Disease Patient-Specific Dopamine Neurons. Biomacromolecules, 2021, 22, 4582-4591.	5.4	12

Katarzyna MiÅ,owska

#	Article	IF	CITATIONS
37	Interaction between viologen-phosphorus dendrimers and α-synuclein. Journal of Luminescence, 2013, 134, 132-137.	3.1	11
38	Hybrid phosphorus–viologen dendrimers as new soft nanoparticles: design and properties. Organic Chemistry Frontiers, 2021, 8, 4607-4622.	4.5	11
39	Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells. International Journal of Molecular Sciences, 2021, 22, 7097.	4.1	11
40	Interactions of free copper (II) ions alone or in complex with iron (III) ions with erythrocytes of marine fish <i>Dicentrarchus labrax</i> . Cell Biology International, 2009, 33, 941-948.	3.0	10
41	Interaction between dendrimers and regulatory proteins. Comparison of effects of carbosilane and carbosilane–viologen–phosphorus dendrimers. RSC Advances, 2016, 6, 97546-97554.	3.6	10
42	Generation Dependent Effects and Entrance to Mitochondria of Hybrid Dendrimers on Normal and Cancer Neuronal Cells In Vitro. Biomolecules, 2020, 10, 427.	4.0	9
43	Insight into Factors Influencing Wound Healing Using Phosphorylated Cellulose-Filled-Chitosan Nanocomposite Films. International Journal of Molecular Sciences, 2021, 22, 11386.	4.1	9
44	Chimeric Stimuli-Responsive Liposomes as Nanocarriers for the Delivery of the Anti-Glioma Agent TRAM-34. International Journal of Molecular Sciences, 2021, 22, 6271.	4.1	7
45	Synthesis and Hemostatic Activity of New Amide Derivatives. Molecules, 2022, 27, 2271.	3.8	7
46	Biological Activity of Pentachlorophenol on the Digestive Gland Cells of the Freshwater Mussel Unio tumidus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2003, 58, 867-872.	1.4	6
47	Evaluation of the Effect of Selected Brominated Flame Retardants on Human Serum Albumin and Human Erythrocyte Membrane Proteins. International Journal of Molecular Sciences, 2020, 21, 3926.	4.1	6
48	Thermodynamic Studies of Interactions between Sertraline Hydrochloride and Randomly Methylated β-Cyclodextrin Molecules Supported by Circular Dichroism Spectroscopy and Molecular Docking Results. International Journal of Molecular Sciences, 2021, 22, 12357.	4.1	6
49	Thermoresponsive chimeric nanocarriers as drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112141.	5.0	5
50	Influence of PAMAM dendrimers on the human insulin. AIP Conference Proceedings, 2015, , .	0.4	3
51	Dendrimeric HIV-peptide delivery nanosystem affects lipid membranes structure. Scientific Reports, 2021, 11, 16810.	3.3	3
52	The Interaction of Heptakis (2,6-di-O-Methyl)-β-cyclodextrin with Mianserin Hydrochloride and Its Influence on the Drug Toxicity. International Journal of Molecular Sciences, 2021, 22, 9419.	4.1	3
53	The use of chitosan-based biomaterials for the treatment of hard-healing wounds. Postepy Higieny I Medycyny Doswiadczalnej, 2019, 73, 768-781.	0.1	3
54	Glassy-like Metal Oxide Particles Embedded on Micrometer Thicker Alginate Films as Promising Wound Healing Nanomaterials. International Journal of Molecular Sciences, 2022, 23, 5585.	4.1	2

Katarzyna MiÅ,owska

#	Article	IF	CITATIONS
55	Carbosilane dendrimers affect the fibrillation of $\hat{l}\pm$ -synuclein. AIP Conference Proceedings, 2015, , .	0.4	1
56	Silver nanoparticles – possible applications and threats. Acta Universitatis Lodziensis Folia Biologica Et Oecologica, 0, 17, 14-31.	1.0	1
57	Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells Cultured in 3D Spheroids. Cells, 2022, 11, 1697.	4.1	1
58	Determination of the cytotoxicity of nanosilver coated with carbosilane dendrons against B14 cells. Acta Universitatis Lodziensis Folia Biologica Et Oecologica, 0, 17, 10-10.	1.0	0
59	Interactions of dendrimers and dendronized nanoparticles with proteins. Vestsi Natsyianal'nai Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2020, 65, 497-509.	0.1	0