Ali Tehrani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4334981/publications.pdf

Version: 2024-02-01

172443 168376 2,923 63 29 53 citations h-index g-index papers 64 64 64 3179 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Surface characterization of thin-film composite membranes using contact angle technique: Review of quantification strategies and applications. Advances in Colloid and Interface Science, 2022, 299, 102524.	14.7	63
2	The effect of temperature on the electrical and thermal conductivity of grapheneâ€based polymer composite films. Journal of Applied Polymer Science, 2022, 139, 51896.	2.6	8
3	An Overview of Selfâ€Healable Polymers and Recent Advances in the Field. Macromolecular Rapid Communications, 2022, 43, e2200164.	3.9	8
4	The effect of graphene flake size on the properties of grapheneâ€based polymer composite films. Journal of Applied Polymer Science, 2021, 138, 49821.	2.6	28
5	Unsupported electrospun membrane for water desalination using direct contact membrane distillation. Journal of Applied Polymer Science, 2021, 138, 49861.	2.6	6
6	Ultrasound-assisted extraction of natural dyes from Hawthorn fruits for dyeing polyamide fabric and study its fastness, antimicrobial, and antioxidant properties. Environment, Development and Sustainability, 2021, 23, 9163-9180.	5.0	25
7	Curcumin release from blended polycaprolactone/polylactic acid electrospun nanofibrous meshes. Journal of Industrial Textiles, 2021, 50, 1065-1078.	2.4	3
8	Thermal and mechanical properties of epoxy resin reinforced with modified iron oxide nanoparticles. Journal of Applied Polymer Science, 2021, 138, 50533.	2.6	16
9	Grafting of Wool with Alginate Biopolymer/Nano Ag as a Clean Antimicrobial and Antioxidant Agent: Characterization and Natural Dyeing Studies. Journal of Polymers and the Environment, 2021, 29, 2639-2649.	5.0	13
10	The mechanical and thermal properties of graphitic carbon nitride (<scp>gâ€C₃N₄</scp>)â€based epoxy composites. Journal of Applied Polymer Science, 2021, 138, 51324.	2.6	16
11	Elliptic percolation model for predicting the electrical conductivity of graphene–polymer composites. Soft Matter, 2021, 17, 2081-2089.	2.7	13
12	Highly Flexible Single-Unit Resolution All Printed Neural Interface on a Bioresorbable Backbone. ACS Applied Bio Materials, 2020, 3, 7040-7051.	4. 6	25
13	Electrospun nanofibrous polyvinylidene fluorideâ€coâ€hexafluoropropylene membranes for <scp>oil–water</scp> separation. Journal of Applied Polymer Science, 2020, 137, 49394.	2.6	19
14	Zero-Waste Recycling of Shelf-Cured Pre-Impregnated Carbon Fiber Reinforced Epoxy Laminae. Applied Composite Materials, 2020, 27, 357-373.	2.5	4
15	Synthesis of Palladium Nanodendrites Using a Mixture of Cationic and Anionic Surfactants. Langmuir, 2020, 36, 1745-1753.	3.5	17
16	Curcumin degradation kinetics in micellar solutions: Enhanced stability in the presence of cationic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592, 124602.	4.7	21
17	Effect of Ultra Violet (UV) Irradiation as an Environmentally Friendly Pre-Treatment on Dyeing Characteristic and Colorimetric Analysis of Wool. Fibers and Polymers, 2020, 21, 179-187.	2.1	11
18	Grapheneâ€based polymer composites with ultraâ€high inâ€plane thermal conductivity: A comparison study between optothermal Raman spectroscopy and laser flash method. Journal of Applied Polymer Science, 2020, 137, 48927.	2.6	10

#	Article	IF	CITATIONS
19	Cosolvent Effects on the Aggregation and Micellar Growth of Ester-Containing Gemini Surfactants. Journal of Chemical & Description (2020), 65, 2486-2494.	1.9	5
20	The effects of modified zinc oxide nanoparticles on the mechanical/thermal properties of epoxy resin. Journal of Applied Polymer Science, 2020, 137, 49330.	2.6	39
21	Prospects of nanocomposite membranes for water treatment by membrane distillation. , 2020, , 299-320.		2
22	Evaluating the Effect of Binder Aging and Mineral Fillers on Moisture Susceptibility of Asphalt Concrete Using Surface Free Energy. , 2019, , .		2
23	Assessing Moisture Damage of Asphalt-Aggregate Systems Using Principles of Thermodynamics: Effects of Recycled Materials and Binder Aging. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	14
24	Use of pomegranate peels and walnut green husks as the green antimicrobial agents to reduce the consumption of inorganic nanoparticles on wool yarns. Journal of Cleaner Production, 2019, 231, 1463-1473.	9.3	36
25	Waterproof breathable layers – A review. Advances in Colloid and Interface Science, 2019, 268, 114-135.	14.7	58
26	Corrosion of mild steel in hydrochloric acid solution in the presence of two cationic gemini surfactants with and without hydroxyl substituted spacers. Corrosion Science, 2018, 137, 62-75.	6.6	71
27	Enhanced anti-microbial, anti-creasing and dye absorption properties of cotton fabric treated with Chitosan–Cyanuric Chloride hybrid. Cellulose, 2018, 25, 883-893.	4.9	40
28	Electrospun waterproof breathable membrane with a high level of aerosol filtration. Journal of Applied Polymer Science, 2018, 135, 45660.	2.6	26
29	Electrospun polymer blend with tunable structure for oil–water separation. Journal of Applied Polymer Science, 2018, 135, 46890.	2.6	12
30	Catalytic Wet Peroxide Oxidation. , 2018, , 375-402.		4
31	A mathematical model to predict the effect of electrospinning processing parameters on the morphological characteristic of nano-fibrous web and associated filtration efficiency. Journal of Aerosol Science, 2017, 113, 227-241.	3.8	27
32	Simplified modeling of the electrospinning process from the stable jet region to the unstable region for predicting the final nanofiber diameter. Journal of Applied Polymer Science, 2016, 133, .	2.6	30
33	An Ouzo emulsion of toluene in water characterized by NMR diffusometry and static multiple light scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 81-86.	4.7	11
34	Retarding action of poly(amidoamine) dendrimers and cationic gemini surfactants in acrylic dyeing. Dyes and Pigments, 2016, 125, 323-330.	3.7	14
35	Mesoscopically Ordered Boneâ€Mimetic Nanocomposites. Advanced Materials, 2015, 27, 2260-2264.	21.0	55
36	Cationic ester-containing gemini surfactants as retarders in acrylic dyeing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 479, 52-59.	4.7	19

3

#	Article	IF	CITATIONS
37	Cationic gemini surfactants with cleavable spacer: Chemical hydrolysis, biodegradation, and toxicity. Journal of Colloid and Interface Science, 2015, 449, 72-79.	9.4	67
38	Anisotropic growth of gold nanoparticles using cationic gemini surfactants: effects of structure variations in head and tail groups. Journal of Materials Chemistry C, 2014, 2, 994-1003.	5.5	39
39	Additional Article Notification: Anisotropic growth of gold nanoparticles using cationic gemini surfactants: effects of structure variations in head and tail groups. Journal of Materials Chemistry C, 2014, 2, 3476.	5.5	0
40	Epoxy Resin Monomers with Reduced Skin Sensitizing Potency. Chemical Research in Toxicology, 2014, 27, 1002-1010.	3.3	12
41	Effect of aging time on corrosion inhibition of cationic surfactant on mild steel in sulfamic acid cleaning solution. Corrosion Science, 2013, 70, 46-54.	6.6	80
42	Micelle growth of cationic gemini surfactants studied by NMR and by time-resolved fluorescence quenching. Journal of Colloid and Interface Science, 2013, 405, 145-149.	9.4	16
43	Solubilization of Hydrophobic Dyes in Surfactant Solutions. Materials, 2013, 6, 580-608.	2.9	215
44	Solubilization of two organic dyes by anionic, cationic and nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 417, 133-139.	4.7	47
45	The study of Sunset Yellow anionic dye interaction with gemini and conventional cationic surfactants in aqueous solution. Dyes and Pigments, 2012, 95, 768-775.	3.7	50
46	Solubilization of two organic dyes by cationic ester-containing gemini surfactants. Journal of Colloid and Interface Science, 2012, 376, 112-118.	9.4	96
47	Cationic ester-containing gemini surfactants: Determination of aggregation numbers by time-resolved fluorescence quenching. Journal of Colloid and Interface Science, 2012, 376, 126-132.	9.4	56
48	Aggregation behavior and intermicellar interactions of cationic Gemini surfactants: Effects of alkyl chain, spacer lengths and temperature. Journal of Chemical Thermodynamics, 2012, 44, 107-115.	2.0	62
49	Degradation of Two Persistent Surfactants by UVâ€Enhanced Ozonation. Journal of Surfactants and Detergents, 2012, 15, 59-66.	2.1	21
50	A comparative study on the electrochemical behavior of mild steel in sulfamic acid solution in the presence of monomeric and gemini surfactants. Electrochimica Acta, 2011, 58, 488-496.	5.2	54
51	Comparison of a Cationic Gemini Surfactant and the Corresponding Monomeric Surfactant for Corrosion Protection of Mild Steel in Hydrochloric Acid. Journal of Surfactants and Detergents, 2011, 14, 605-613.	2.1	54
52	Solubility of Two Disperse Dyes Derived from N-Alkyl and N-Carboxylic Acid Naphthalimides in the Presence of Gemini Cationic Surfactants. Journal of Surfactants and Detergents, 2011, 14, 381-389.	2.1	28
53	Intermolecular interactions between a dye and cationic surfactants: Effects of alkyl chain, head group, and counterion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380, 119-127.	4.7	84
54	The sorption of cationic dyes onto kaolin: Kinetic, isotherm and thermodynamic studies. Desalination, 2011, 266, 274-280.	8.2	158

ALI TEHRANI

#	Article	IF	CITATIONS
55	Reactive dye removal from wastewater using a chitosan nanodispersion. Desalination, 2011, 271, 225-230.	8.2	59
56	Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye. Desalination, 2010, 257, 124-128.	8.2	80
57	Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination, 2010, 260, 34-38.	8.2	278
58	Cationic Ester-Containing Gemini Surfactants: Physicalâ^'Chemical Properties. Langmuir, 2010, 26, 9276-9282.	3.5	194
59	The anionic conventional surfactants effect on the nanostructures and microstructures properties in cationic Gemini surfactants aqueous solution. , 2010, , .		1
60	Cationic Ester-Containing Gemini Surfactants: Adsorption at Tailor-Made Surfaces Monitored by SPR and QCM. Langmuir, 2008, 24, 6140-6145.	3.5	53
61	Cleavable surfactants. Current Opinion in Colloid and Interface Science, 2007, 12, 81-91.	7.4	99
62	Cationic ester-containing gemini surfactants: Chemical hydrolysis and biodegradation. Journal of Colloid and Interface Science, 2007, 312, 444-452.	9.4	158
63	Interactions of gemini cationic surfactants with anionic azo dyes and their inhibited effects on dyeability of cotton fabric. Dyes and Pigments, 2007, 72, 331-338.	3.7	88