Wenlong Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4334934/publications.pdf Version: 2024-02-01

WENLONG CAL

#	Article	IF	CITATIONS
1	Probing the Mechanism of Isonitrile Formation by a Non-Heme Iron(II)-Dependent Oxidase/Decarboxylase. Journal of the American Chemical Society, 2022, 144, 5893-5901.	13.7	9
2	Biochemical and crystallographic investigations into isonitrile formation by a nonheme iron-dependent oxidase/decarboxylase. Journal of Biological Chemistry, 2021, 296, 100231.	3.4	16
3	Biosynthesis of triacsin featuring an N-hydroxytriazene pharmacophore. Nature Chemical Biology, 2021, 17, 1305-1313.	8.0	30
4	Facile Discovery and Quantification of Isonitrile Natural Products via Tetrazine-Based Click Reactions. Analytical Chemistry, 2020, 92, 599-602.	6.5	21
5	Discovery and Biosynthesis of Clostyrylpyrones from the Obligate Anaerobe <i>Clostridium roseum</i> . Organic Letters, 2020, 22, 8204-8209.	4.6	7
6	Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16009-16018.	7.1	39
7	Investigation of secondary metabolism in the industrial butanol hyper-producer Clostridium saccharoperbutylacetonicum N1-4. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 319-328.	3.0	15
8	Adaptation of Mycobacterium tuberculosis to Biofilm Growth Is Genetically Linked to Drug Tolerance. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	38
9	The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development. Molecules, 2019, 24, 3122.	3.8	116
10	Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. Nature Chemistry, 2019, 11, 880-889.	13.6	60
11	Identifying the Biosynthetic Gene Cluster for Triacsins with an <i>N</i> â€Hydroxytriazene Moiety. ChemBioChem, 2019, 20, 1145-1149.	2.6	39
12	Identification of the Biosynthetic Pathway for the Antibiotic Bicyclomycin. Biochemistry, 2018, 57, 61-65.	2.5	55
13	Engineering modular polyketide synthases for production of biofuels and industrial chemicals. Current Opinion in Biotechnology, 2018, 50, 32-38.	6.6	34
14	Isonitrile Formation by a Nonâ€Heme Iron(II)â€Dependent Oxidase/Decarboxylase. Angewandte Chemie, 2018, 130, 9855-9858.	2.0	6
15	Isonitrile Formation by a Nonâ€Heme Iron(II)â€Dependent Oxidase/Decarboxylase. Angewandte Chemie - International Edition, 2018, 57, 9707-9710.	13.8	36
16	Evidence that oxidative dephosphorylation by the nonheme Fe(<scp>II</scp>), αâ€ketoglutarate: <scp>UMP</scp> oxygenase occurs by stereospecific hydroxylation. FEBS Letters, 2017, 591, 468-478.	2.8	11
17	Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7025-7030.	7.1	62
18	Bi- and Tetracyclic Spirotetronates from the Coal Mine Fire Isolate <i>Streptomyces</i> sp. LC-6-2. Journal of Natural Products, 2017, 80, 1141-1149.	3.0	32

Wenlong Cai

#	Article	IF	CITATIONS
19	The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation. Nature Communications, 2017, 8, 1514.	12.8	42
20	Antibacterial and Cytotoxic Actinomycins Y ₆ –Y ₉ and Zp from <i>Streptomyces</i> sp. Strain Gö-GS12. Journal of Natural Products, 2016, 79, 2731-2739.	3.0	39
21	A biocatalytic approach to capuramycin analogues by exploiting a substrate permissive N-transacylase CapW. Organic and Biomolecular Chemistry, 2016, 14, 3956-3962.	2.8	16
22	The Biosynthesis of Capuramycin-type Antibiotics. Journal of Biological Chemistry, 2015, 290, 13710-13724.	3.4	28