Marta Robledo Garrido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4334809/publications.pdf

Version: 2024-02-01

26 papers 844 citations

687363 13 h-index 25 g-index

28 all docs 28 docs citations

times ranked

28

894 citing authors

#	Article	IF	Citations
1	Pervasive RNA Regulation of Metabolism Enhances the Root Colonization Ability of Nitrogen-Fixing Symbiotic $\hat{l}\pm$ -Rhizobia. MBio, 2022, 13, e0357621.	4.1	7
2	The noncoding RNA CcnA modulates the master cell cycle regulators CtrA and GcrA in Caulobacter crescentus. PLoS Biology, 2022, 20, e3001528.	5.6	6
3	Synthetase of the methyl donor S-adenosylmethionine from nitrogen-fixing α-rhizobia can bind functionally diverse RNA species. RNA Biology, 2021, 18, 1111-1123.	3.1	8
4	Riboregulation in Nitrogen-Fixing Endosymbiotic Bacteria. Microorganisms, 2020, 8, 384.	3.6	12
5	Identification of Small RNA–Protein Partners in Plant Symbiotic Bacteria. Methods in Molecular Biology, 2018, 1737, 351-370.	0.9	6
6	Heterologous Expression of Rhizobial CelC2 Cellulase Impairs Symbiotic Signaling and Nodulation in <i>Medicago truncatula</i> Molecular Plant-Microbe Interactions, 2018, 31, 568-575.	2.6	9
7	Primary Characterization of Small RNAs in Symbiotic Nitrogen-Fixing Bacteria. Methods in Molecular Biology, 2018, 1734, 277-295.	0.9	8
8	Sinorhizobium meliloti RNase III: Catalytic Features and Impact on Symbiosis. Frontiers in Genetics, 2018, 9, 350.	2.3	9
9	An sRNA and Cold Shock Protein Homolog-Based Feedforward Loop Post-transcriptionally Controls Cell Cycle Master Regulator CtrA. Frontiers in Microbiology, 2018, 9, 763.	3.5	12
10	A conserved αâ€proteobacterial small RNA contributes to osmoadaptation and symbiotic efficiency of rhizobia on legume roots. Environmental Microbiology, 2017, 19, 2661-2680.	3.8	27
11	Sinorhizobium meliloti YbeY is an endoribonuclease with unprecedented catalytic features, acting as silencing enzyme in riboregulation. Nucleic Acids Research, 2017, 45, 1371-1391.	14.5	29
12	RNA silencing in plant symbiotic bacteria: Insights from a protein-centric view. RNA Biology, 2017, 14, 1672-1677.	3.1	7
13	Rhizobium Symbiotic Enzyme Cellulase CelC2: Properties and Applications. , 2016, , 81-89.		2
14	Spatiotemporal choreography of chromosome and megaplasmids in the <i>Sinorhizobium meliloti</i> cell cycle. Molecular Microbiology, 2016, 100, 808-823.	2.5	37
15	The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA <i>sinI</i> in <i>Sinorhizobium meliloti</i> i>. RNA Biology, 2016, 13, 486-499.	3.1	35
16	Antisense transcription of symbiotic genes in Sinorhizobium meliloti. Symbiosis, 2015, 67, 55-67.	2.3	23
17	A Stress-Induced Small RNA Modulates Alpha-Rhizobial Cell Cycle Progression. PLoS Genetics, 2015, 11, e1005153.	3.5	51
18	Unraveling the universe of small RNA regulators in the legume symbiont Sinorhizobium meliloti. Symbiosis, 2015, 67, 43-54.	2.3	15

#	ARTICLE	IF	CITATIONS
19	Riboregulation in plant-associated α-proteobacteria. RNA Biology, 2014, 11, 550-562.	3.1	43
20	Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in $\langle i \rangle$ Sinorhizobium meliloti $\langle i \rangle$. RNA Biology, 2014, 11, 563-579.	3.1	65
21	A ClpB Chaperone Knockout Mutant of <i>Mesorhizobium ciceri</i> Shows a Delay in the Root Nodulation of Chickpea Plants. Molecular Plant-Microbe Interactions, 2012, 25, 1594-1604.	2.6	23
22	Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microbial Cell Factories, 2012, 11, 125.	4.0	86
23	Rhizobium Promotes Non-Legumes Growth and Quality in Several Production Steps: Towards a Biofertilization of Edible Raw Vegetables Healthy for Humans. PLoS ONE, 2012, 7, e38122.	2.5	155
24	Development of Functional Symbiotic White Clover Root Hairs and Nodules Requires Tightly Regulated Production of Rhizobial Cellulase CelC2. Molecular Plant-Microbe Interactions, 2011, 24, 798-807.	2.6	31
25	The celC gene, a new phylogenetic marker useful for taxonomic studies in Rhizobium. Systematic and Applied Microbiology, 2011, 34, 393-399.	2.8	13
26	<i>Rhizobium</i> cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7064-7069.	7.1	119