
Elizabeth Ann Winzeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4334541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418, 387-391.	13.7	3,938
2	Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 1999, 285, 901-906.	6.0	3,761
3	A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Molecular Cell, 1998, 2, 65-73.	4.5	1,927
4	Genomics, gene expression and DNA arrays. Nature, 2000, 405, 827-836.	13.7	1,893
5	Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle. Science, 2003, 301, 1503-1508.	6.0	1,122
6	Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science, 2010, 329, 1175-1180.	6.0	1,031
7	Replication Dynamics of the Yeast Genome. Science, 2001, 294, 115-121.	6.0	736
8	Genomic profiling of drug sensitivities via induced haploinsufficiency. Nature Genetics, 1999, 21, 278-283.	9.4	533
9	The core meiotic transcriptome in budding yeasts. Nature Genetics, 2000, 26, 415-423.	9.4	430
10	<i>In silico</i> activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9059-9064.	3.3	400
11	Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Research, 2004, 14, 2308-2318.	2.4	394
12	Spirotetrahydro β-Carbolines (Spiroindolones): A New Class of Potent and Orally Efficacious Compounds for the Treatment of Malaria. Journal of Medicinal Chemistry, 2010, 53, 5155-5164.	2.9	381
13	Targeting Plasmodium PI(4)K to eliminate malaria. Nature, 2013, 504, 248-253.	13.7	377
14	Direct Allelic Variation Scanning of the Yeast Genome. , 1998, 281, 1194-1197.		368
15	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	13.7	353
16	Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3107-3112.	3.3	346
17	Large-Scale Identification of Single-Feature Polymorphisms in Complex Genomes. Genome Research, 2003, 13, 513-523.	2.4	345
18	Imaging of <i>Plasmodium</i> Liver Stages to Drive Next-Generation Antimalarial Drug Discovery. Science, 2011, 334, 1372-1377.	6.0	308

#	Article	IF	CITATIONS
19	The Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative Study with Human and Rodent Parasites. PLoS Medicine, 2012, 9, e1001169.	3.9	301
20	The Plasmodium falciparum sexual development transcriptome: A microarray analysis using ontology-based pattern identification. Molecular and Biochemical Parasitology, 2005, 143, 67-79.	0.5	295
21	A Plant-Like Kinase in <i>Plasmodium falciparum</i> Regulates Parasite Egress from Erythrocytes. Science, 2010, 328, 910-912.	6.0	263
22	Molecular Mechanism for Switching of P. falciparum Invasion Pathways into Human Erythrocytes. Science, 2005, 309, 1384-1387.	6.0	247
23	Antimalarial drug discovery — approaches and progress towards new medicines. Nature Reviews Microbiology, 2013, 11, 849-862.	13.6	244
24	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	2.1	244
25	malERA: An updated research agenda for malaria elimination and eradication. PLoS Medicine, 2017, 14, e1002456.	3.9	221
26	Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature, 2007, 450, 1091-1095.	13.7	220
27	Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 2016, 538, 344-349.	13.7	214
28	Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nature Chemical Biology, 2008, 4, 347-356.	3.9	203
29	Selective and Specific Inhibition of the Plasmodium falciparum Lysyl-tRNA Synthetase by the Fungal Secondary Metabolite Cladosporin. Cell Host and Microbe, 2012, 11, 654-663.	5.1	202
30	Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science, 2018, 359, 191-199.	6.0	194
31	Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families. PLoS Genetics, 2013, 9, e1003293.	1.5	192
32	Plasmodium Circumsporozoite Protein Promotes the Development of the Liver Stages of the Parasite. Cell, 2007, 131, 492-504.	13.5	187
33	Na+ Regulation in the Malaria Parasite Plasmodium falciparum Involves the Cation ATPase PfATP4 and Is a Target of the Spiroindolone Antimalarials. Cell Host and Microbe, 2013, 13, 227-237.	5.1	185
34	A Systematic Map of Genetic Variation in Plasmodium falciparum. PLoS Pathogens, 2006, 2, e57.	2.1	176
35	Common PIEZO1 Allele in African Populations Causes RBC Dehydration and Attenuates Plasmodium Infection. Cell, 2018, 173, 443-455.e12.	13.5	176
36	Genetic Diversity in Yeast Assessed With Whole-Genome Oligonucleotide Arrays. Genetics, 2003, 163, 79-89.	1.2	171

3

#	Article	IF	CITATIONS
37	High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host and Microbe, 2016, 19, 114-126.	5.1	140
38	A Plasmodium Gene Family Encoding Maurer's Cleft Membrane Proteins: Structural Properties and Expression Profiling. Genome Research, 2004, 14, 1052-1059.	2.4	133
39	Malaria research in the post-genomic era. Nature, 2008, 455, 751-756.	13.7	133
40	Validation of isoleucine utilization targets in <i>Plasmodium falciparum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1627-1632.	3.3	123
41	KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrobial Agents and Chemotherapy, 2014, 58, 5060-5067.	1.4	122
42	The Plasmodium eukaryotic initiation factor-2α kinase IK2 controls the latency of sporozoites in the mosquito salivary glands. Journal of Experimental Medicine, 2010, 207, 1465-1474.	4.2	121
43	Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. Genome Biology, 2009, 10, R21.	13.9	120
44	Synthesis and Biological Evaluation of Epidithio-, Epitetrathio-, and bis-(Methylthio)diketopiperazines: Synthetic Methodology, Enantioselective Total Synthesis of Epicoccin G, 8,8â€2- <i>epi</i> - <i>ent</i> -Rostratin B, Gliotoxin, Gliotoxin G, Emethallicin E, and Haematocin and Discovery of New Antiviral and Antimalarial Agents. Journal of the American Chemical Society, 2012, 134, 17320-17332.	6.6	113
45	The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13431-13436.	3.3	107
46	Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study. Lancet Infectious Diseases, The, 2018, 18, 874-883.	4.6	106
47	In silico discovery of transcription regulatory elements in Plasmodium falciparum. BMC Genomics, 2008, 9, 70.	1.2	104
48	Piperaquine Resistance Is Associated with a Copy Number Variation on Chromosome 5 in Drug-Pressured <i>Plasmodium falciparum</i> Parasites. Antimicrobial Agents and Chemotherapy, 2011, 55, 3908-3916.	1.4	102
49	UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nature Microbiology, 2016, 1, 16166.	5.9	102
50	Whole-genome sequencing and microarray analysis of ex vivo <i>Plasmodium vivax</i> reveal selective pressure on putative drug resistance genes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20045-20050.	3.3	99
51	Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science, 2018, 362, .	6.0	99
52	Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10605-10610.	3.3	98
53	A Systems-Based Analysis of Plasmodium vivax Lifecycle Transcription from Human to Mosquito. PLoS Neglected Tropical Diseases, 2010, 4, e653.	1.3	96
54	A broad analysis of resistance development in the malaria parasite. Nature Communications, 2016, 7, 11901.	5.8	94

#	Article	IF	CITATIONS
55	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	3.3	94
56	In Vivo Transcriptome ofPlasmodium falciparumReveals Overexpression of Transcripts That Encode Surface Proteins. Journal of Infectious Diseases, 2005, 191, 1196-1203.	1.9	92
57	A high throughput screen for next-generation leads targeting malaria parasite transmission. Nature Communications, 2018, 9, 3805.	5.8	92
58	Application of High-Density Array-Based Signature-Tagged Mutagenesis To Discover Novel Yersinia Virulence-Associated Genes. Infection and Immunity, 2001, 69, 7810-7819.	1.0	91
59	Imidazolopiperazines: Hit to Lead Optimization of New Antimalarial Agents. Journal of Medicinal Chemistry, 2011, 54, 5116-5130.	2.9	91
60	Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21486-21491.	3.3	89
61	Experimentally Induced Blood-Stage Plasmodium vivax Infection in Healthy Volunteers. Journal of Infectious Diseases, 2013, 208, 1688-1694.	1.9	87
62	A Chemical Genomic Analysis of Decoquinate, a <i>Plasmodium falciparum</i> Cytochrome <i>b</i> Inhibitor. ACS Chemical Biology, 2011, 6, 1214-1222.	1.6	84
63	High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infectious Diseases, 2016, 2, 281-293.	1.8	84
64	Imidazolopiperazines: Lead Optimization of the Second-Generation Antimalarial Agents. Journal of Medicinal Chemistry, 2012, 55, 4244-4273.	2.9	83
65	A Variant PfCRT Isoform Can Contribute to <i>Plasmodium falciparum</i> Resistance to the First-Line Partner Drug Piperaquine. MBio, 2017, 8, .	1.8	82
66	Excess Polymorphisms in Genes for Membrane Proteins inPlasmodium falciparum. Science, 2002, 298, 216-218.	6.0	80
67	Evidence-Based Annotation of the Malaria Parasite's Genome Using Comparative Expression Profiling. PLoS ONE, 2008, 3, e1570.	1.1	78
68	Mutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials. ACS Chemical Biology, 2015, 10, 413-420.	1.6	75
69	In silico gene function prediction using ontology-based pattern identification. Bioinformatics, 2005, 21, 1237-1245.	1.8	74
70	Treasures and traps in genome-wide data sets: case examples from yeast. Nature Reviews Genetics, 2002, 3, 653-661.	7.7	72
71	A High Resolution Case Study of a Patient with Recurrent Plasmodium vivax Infections Shows That Relapses Were Caused by Meiotic Siblings. PLoS Neglected Tropical Diseases, 2014, 8, e2882.	1.3	70
72	Development of a Potent Inhibitor of the <i>Plasmodium</i> Proteasome with Reduced Mammalian Toxicity. Journal of Medicinal Chemistry, 2017, 60, 6721-6732.	2.9	70

#	Article	IF	CITATIONS
73	Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages. European Journal of Medicinal Chemistry, 2014, 82, 204-213.	2.6	68
74	Open Source Drug Discovery: Highly Potent Antimalarial Compounds Derived from the Tres Cantos Arylpyrroles. ACS Central Science, 2016, 2, 687-701.	5.3	68
75	Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes. BMC Genomics, 2009, 10, 610.	1.2	67
76	Drug resistance genomics of the antimalarial drug artemisinin. Genome Biology, 2014, 15, 544.	3.8	66
77	Discovery of a Quinoline-4-carboxamide Derivative with a Novel Mechanism of Action, Multistage Antimalarial Activity, and Potent in Vivo Efficacy. Journal of Medicinal Chemistry, 2016, 59, 9672-9685.	2.9	66
78	The genomic architecture of antimalarial drug resistance. Briefings in Functional Genomics, 2019, 18, 314-328.	1.3	66
79	Direct transfer of whole genomes from bacteria to yeast. Nature Methods, 2013, 10, 410-412.	9.0	64
80	Synthesis of (+)-7,20-Diisocyanoadociane and Liver-Stage Antiplasmodial Activity of the Isocyanoterpene Class. Journal of the American Chemical Society, 2016, 138, 7268-7271.	6.6	64
81	Parallel Identification of New Genes in Saccharomyces cerevisiae. Genome Research, 2002, 12, 1210-1220.	2.4	61
82	KAI407, a Potent Non-8-Aminoquinoline Compound That Kills Plasmodium cynomolgi Early Dormant Liver Stage Parasites <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2014, 58, 1586-1595.	1.4	61
83	Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nature Communications, 2021, 12, 269.	5.8	61
84	Using <i>in Vitro</i> Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2018, 4, 301-314.	1.8	60
85	Functional analysis of the yeast genome. Current Opinion in Genetics and Development, 1997, 7, 771-776.	1.5	59
86	Genome scanning of Amazonian <i>Plasmodium falciparum</i> shows subtelomeric instability and clindamycin-resistant parasites. Genome Research, 2010, 20, 1534-1544.	2.4	59
87	Using Genetic Methods To Define the Targets of Compounds with Antimalarial Activity. Journal of Medicinal Chemistry, 2013, 56, 7761-7771.	2.9	59
88	Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of <i>Plasmodium vivax</i> from Unprocessed Clinical Samples. MBio, 2017, 8, .	1.8	59
89	A systematic approach to understand the mechanism of action of the bisthiazolium compound T4 on the human malaria parasite, Plasmodium falciparum. BMC Genomics, 2008, 9, 513.	1.2	58
90	Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathogens, 2019, 15, e1007722.	2.1	58

#	Article	IF	CITATIONS
91	CRISPRâ€Cas9â€modified <i>pfmdr1</i> protects <i>Plasmodium falciparum</i> asexual blood stages and gametocytes against a class of piperazineâ€containing compounds but potentiates artemisininâ€based combination therapy partner drugs. Molecular Microbiology, 2016, 101, 381-393.	1.2	56
92	Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chemical Biology, 2020, 27, 806-816.e8.	2.5	56
93	Systems analysis of host–parasite interactions. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 381-400.	6.6	55
94	Target Validation and Identification of Novel Boronate Inhibitors of the <i>Plasmodium falciparum</i> Proteasome. Journal of Medicinal Chemistry, 2018, 61, 10053-10066.	2.9	54
95	Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Medicine, 2019, 11, 63.	3.6	54
96	Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chemical Biology, 2020, 27, 158-171.e3.	2.5	54
97	In vivo transcriptional profiling of Plasmodium falciparum. Malaria Journal, 2004, 3, 30.	0.8	52
98	Microarray-based comparative genomic analyses of the human malaria parasite Plasmodium falciparum using Affymetrix arrays. Molecular and Biochemical Parasitology, 2005, 144, 177-186.	0.5	52
99	Exposure of Plasmodium sporozoites to the intracellular concentration of potassium enhances infectivity and reduces cell passage activity. Molecular and Biochemical Parasitology, 2007, 156, 32-40.	0.5	52
100	Identification of a Potential Antimalarial Drug Candidate from a Series of 2-Aminopyrazines by Optimization of Aqueous Solubility and Potency across the Parasite Life Cycle. Journal of Medicinal Chemistry, 2016, 59, 9890-9905.	2.9	51
101	Validation of the protein kinase <i>Pf</i> CLK3 as a multistage cross-species malarial drug target. Science, 2019, 365, .	6.0	51
102	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	1.5	51
103	Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. ELife, 2019, 8, .	2.8	51
104	Infection of Laboratory-Colonized Anopheles darlingi Mosquitoes by Plasmodium vivax. American Journal of Tropical Medicine and Hygiene, 2014, 90, 612-616.	0.6	50
105	Plasmodium falciparum: Genome wide perturbations in transcript profiles among mixed stage cultures after chloroquine treatment. Experimental Parasitology, 2007, 117, 87-92.	0.5	49
106	Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL) Confer Multidrug Resistance. MBio, 2016, 7, .	1.8	49
107	Phenotypic Screens in Antimalarial Drug Discovery. Trends in Parasitology, 2016, 32, 697-707.	1.5	48
108	Esterase mutation is a mechanism of resistance to antimalarial compounds. Nature Communications, 2017, 8, 14240.	5.8	47

Elizabeth Ann Winzeler

#	Article	IF	CITATIONS
109	Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nature Microbiology, 2017, 2, 1403-1414.	5.9	47
110	Whole genome sequencing analysis of Plasmodium vivax using whole genome capture. BMC Genomics, 2012, 13, 262.	1.2	46
111	Identification of pathogen genomic variants through an integrated pipeline. BMC Bioinformatics, 2014, 15, 63.	1.2	46
112	Monitoring the chromosome 2 intraerythrocytic transcriptome of Plasmodium falciparum using oligonucleotide arrays American Journal of Tropical Medicine and Hygiene, 2002, 67, 233-243.	0.6	46
113	[1] Fluorescence-based expression monitoring using microarrays. Methods in Enzymology, 1999, 306, 3-18.	0.4	45
114	The paradoxical population genetics of Plasmodium falciparum. Trends in Parasitology, 2002, 18, 266-272.	1.5	45
115	Dual RNA-seq identifies human mucosal immunity protein Mucin-13 as a hallmark of Plasmodium exoerythrocytic infection. Nature Communications, 2019, 10, 488.	5.8	45
116	Use of Flow cytometry to identify aCaulobacter4.5 S RNA Temperature-sensitive Mutant Defective in the Cell Cycle. Journal of Molecular Biology, 1995, 251, 346-365.	2.0	41
117	Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chemical Biology, 2022, 29, 191-201.e8.	2.5	39
118	Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor. Scientific Reports, 2016, 6, 27806.	1.6	38
119	Applied systems biology and malaria. Nature Reviews Microbiology, 2006, 4, 145-151.	13.6	37
120	Large-Scale Annotation of Small-Molecule Libraries Using Public Databases. Journal of Chemical Information and Modeling, 2007, 47, 1386-1394.	2.5	37
121	A key role for lipoic acid synthesis during <i>Plasmodium</i> liver stage development. Cellular Microbiology, 2013, 15, 1585-1604.	1.1	36
122	Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2021, 7, 2764-2776.	1.8	35
123	<i>Plasmodium falciparum</i> Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infectious Diseases, 2016, 2, 816-826.	1.8	34
124	The antimalarial resistome – finding new drug targets and their modes of action. Current Opinion in Microbiology, 2020, 57, 49-55.	2.3	34
125	Coordinated functions of WSS1, PSY2 and TOF1 in the DNA damage response. Nucleic Acids Research, 2004, 32, 6519-6530.	6.5	33
126	A Novel Pyrazolopyridine with in Vivo Activity in <i>Plasmodium berghei</i> - and <i>Plasmodium falciparum-</i> Infected Mouse Models from Structure–Activity Relationship Studies around the Core of Recently Identified Antimalarial Imidazopyridazines. Journal of Medicinal Chemistry, 2015, 58, 8713-8722.	2.9	32

Elizabeth Ann Winzeler

#	Article	IF	CITATIONS
127	Regulatory motifs uncovered among gene expression clusters in Plasmodium falciparum. Molecular and Biochemical Parasitology, 2007, 153, 19-30.	0.5	31
128	Target identification and validation of novel antimalarials. Future Microbiology, 2011, 6, 693-704.	1.0	30
129	Lead Optimization of Imidazopyrazines: A New Class of Antimalarial with Activity on <i>Plasmodium</i> Liver Stages. ACS Medicinal Chemistry Letters, 2014, 5, 947-950.	1.3	30
130	Next-Generation Sequencing of <i>Plasmodium vivax</i> Patient Samples Shows Evidence of Direct Evolution in Drug-Resistance Genes. ACS Infectious Diseases, 2015, 1, 367-379.	1.8	30
131	Accessible and distinct decoquinate derivatives active against Mycobacterium tuberculosis and apicomplexan parasites. Communications Chemistry, 2018, 1, .	2.0	30
132	In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model. Science Translational Medicine, 2019, 11, .	5.8	30
133	Evolution of resistance in vitro reveals mechanisms of artemisinin activity in <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26881-26891.	3.3	30
134	One-pot, multi-component synthesis and structure-activity relationships of peptoid-based histone deacetylase (HDAC) inhibitors targeting malaria parasites. European Journal of Medicinal Chemistry, 2018, 158, 801-813.	2.6	29
135	Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling. Genome Research, 2015, 25, 435-444.	2.4	27
136	Exploration of Plasmodium vivax transmission dynamics and recurrent infections in the Peruvian Amazon using whole genome sequencing. Genome Medicine, 2018, 10, 52.	3.6	27
137	Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nature Communications, 2020, 11, 1780.	5.8	27
138	Rapid Chagas Disease Drug Target Discovery Using Directed Evolution in Drug-Sensitive Yeast. ACS Chemical Biology, 2017, 12, 422-434.	1.6	26
139	Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infectious Diseases, 2020, 6, 613-628.	1.8	26
140	Leveraging two-way probe-level block design for identifying differential gene expression with high-density oligonucleotide arrays. BMC Bioinformatics, 2004, 5, 42.	1.2	25
141	Discovery of novel 1H-imidazol-2-yl-pyrimidine-4,6-diamines as potential antimalarials. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4027-4031.	1.0	25
142	Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science, 2022, 376, 1074-1079.	6.0	25
143	Nuclear Repositioning Precedes Promoter Accessibility and Is Linked to the Switching Frequency of a Plasmodium falciparum Invasion Gene. Cell Host and Microbe, 2012, 12, 739-750.	5.1	24
144	Structure–Activity and Structure–Toxicity Relationships of Peptoidâ€Based Histone Deacetylase Inhibitors with Dualâ€Stage Antiplasmodial Activity. ChemMedChem, 2019, 14, 912-926.	1.6	24

#	Article	IF	CITATIONS
145	Potent Antimalarials with Development Potential Identified by Structure-Guided Computational Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series. Journal of Medicinal Chemistry, 2021, 64, 6085-6136.	2.9	24
146	Genomics, systems biology and drug development for infectious diseases. Molecular BioSystems, 2007, 3, 841.	2.9	22
147	Genome Wide Analysis of Inbred Mouse Lines Identifies a Locus Containing Ppar-Î ³ as Contributing to Enhanced Malaria Survival. PLoS ONE, 2010, 5, e10903.	1.1	22
148	Genetic Analysis of Primaquine Tolerance in a Patient with Relapsing Vivax Malaria. Emerging Infectious Diseases, 2013, 19, 802-805.	2.0	21
149	Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone. Communications Biology, 2019, 2, 166.	2.0	20
150	Synthesis and Structure–Activity Relationship of Dual-Stage Antimalarial Pyrazolo[3,4- <i>b</i>]pyridines. Journal of Medicinal Chemistry, 2020, 63, 11902-11919.	2.9	20
151	A Novel Promoter Motif forCaulobacterCell Cycle-controlled DNA Replication Genes. Journal of Molecular Biology, 1996, 264, 412-425.	2.0	19
152	Using expression information to discover new drug and vaccine targets in the malaria parasitePlasmodium falciparum. Pharmacogenomics, 2005, 6, 17-26.	0.6	19
153	Identification of non-CSP antigens bearing CD8 epitopes in mice immunized with irradiated sporozoites. Vaccine, 2011, 29, 7335-7342.	1.7	19
154	Kalkipyrone B, a marine cyanobacterial γ-pyrone possessing cytotoxic and anti-fungal activities. Phytochemistry, 2016, 122, 113-118.	1.4	19
155	Design of proteasome inhibitors with oral efficacy in vivo against <i>Plasmodium falciparum</i> and selectivity over the human proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
156	Human Aurora kinase inhibitor Hesperadin reveals epistatic interaction between Plasmodium falciparum PfArk1 and PfNek1 kinases. Communications Biology, 2020, 3, 701.	2.0	18
157	Large-scale mutagenesis and functional genomics in yeast. Functional and Integrative Genomics, 2002, 2, 193-198.	1.4	17
158	Targeted Disruption of a Ring-infected Erythrocyte Surface Antigen (RESA)-like Export Protein Gene in Plasmodium falciparum Confers Stable Chondroitin 4-Sulfate Cytoadherence Capacity. Journal of Biological Chemistry, 2014, 289, 34408-34421.	1.6	16
159	Optimal 10-Aminoartemisinins With Potent Transmission-Blocking Capabilities for New Artemisinin Combination Therapies–Activities Against Blood Stage P. falciparum Including PfKI3 C580Y Mutants and Liver Stage P. berghei Parasites. Frontiers in Chemistry, 2019, 7, 901.	1.8	16
160	PfMFR3: A Multidrug-Resistant Modulator in <i>Plasmodium falciparum</i> . ACS Infectious Diseases, 2021, 7, 811-825.	1.8	16
161	Translation of the leaderless Caulobacter dnaX mRNA. Journal of Bacteriology, 1997, 179, 3981-3988.	1.0	16
162	Elucidating genetic diversity with oligonucleotide arrays. Chromosome Research, 2005, 13, 225-235.	1.0	15

#	Article	IF	CITATIONS
163	Functional Analysis of the Yeast Genome by Precise Deletion and Parallel Phenotypic Characterization. Novartis Foundation Symposium, 2008, 229, 105-111.	1.2	15
164	Cell-based optimization of novel benzamides as potential antimalarial leads. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6970-6974.	1.0	15
165	Exploration of the <i>Plasmodium falciparum</i> Resistome and Druggable Genome Reveals New Mechanisms of Drug Resistance and Antimalarial Targets. Microbiology Insights, 2018, 11, 117863611880852.	0.9	15
166	Fluorescence anisotropy decay of ethidium bound to nucleosome core particles. 2. The Torsional Motion of the DNA is highly constrained and sensitive to pH. Biochemistry, 1991, 30, 5304-5313.	1.2	14
167	Design and Synthesis of Terephthalic Acidâ€Based Histone Deacetylase Inhibitors with Dual‧tage Anti― Plasmodium Activity. ChemMedChem, 2017, 12, 1627-1636.	1.6	14
168	A consensus-based and readable extension of <i>Li</i> near <i>Co</i> de for <i>R</i> eaction <i>R</i> ules (LiCoRR). Beilstein Journal of Organic Chemistry, 2020, 16, 2645-2662.	1.3	14
169	The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chemical Biology, 2022, 29, 824-839.e6.	2.5	14
170	Chemoprotective antimalarials identified through quantitative high-throughput screening of Plasmodium blood and liver stage parasites. Scientific Reports, 2021, 11, 2121.	1.6	14
171	A novel CSP C-terminal epitope targeted by an antibody with protective activity against Plasmodium falciparum. PLoS Pathogens, 2022, 18, e1010409.	2.1	14
172	Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials. Journal of Medicinal Chemistry, 2016, 59, 6101-6120.	2.9	13
173	Identification of the Plasmodium berghei resistance locus 9 linked to survival on chromosome 9. Malaria Journal, 2013, 12, 316.	0.8	12
174	Continuous Supply of <i>Plasmodium vivax</i> Sporozoites from Colonized <i>Anopheles darlingi</i> in the Peruvian Amazon. ACS Infectious Diseases, 2018, 4, 541-548.	1.8	12
175	Synthesis, Profiling, and in Vivo Evaluation of Cyclopeptides Containing <i>N</i> -Methyl Amino Acids as Antiplasmodial Agents. ACS Medicinal Chemistry Letters, 2019, 10, 137-141.	1.3	12
176	Genomic Approaches to Drug Resistance in Malaria. Annual Review of Microbiology, 2020, 74, 761-786.	2.9	12
177	Identification and Profiling of a Novel Diazaspiro[3.4]octane Chemical Series Active against Multiple Stages of the Human Malaria Parasite <i>Plasmodium falciparum</i> and Optimization Efforts. Journal of Medicinal Chemistry, 2021, 64, 2291-2309.	2.9	11
178	Perspectives: The missing pieces. Nature, 2012, 484, S22-S23.	13.7	10
179	Resistance mapping in malaria. Nature, 2013, 498, 446-447.	13.7	10
180	A Novel Antiparasitic Compound Kills Ring-Stage Plasmodium falciparum and Retains Activity Against Artemisinin-Resistant Parasites. Journal of Infectious Diseases, 2020, 221, 956-962.	1.9	10

#	Article	IF	CITATIONS
181	Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in <i>Plasmodium falciparum</i> . Journal of Medicinal Chemistry, 2021, 64, 2739-2761.	2.9	10
182	Noncoding RNA, antigenic variation, and the virulence genes of Plasmodium falciparum. BMC Biology, 2011, 9, 50.	1.7	9
183	Whole Genome Shotgun Sequencing Shows Selection on Leptospira Regulatory Proteins During in vitro Culture Attenuation. American Journal of Tropical Medicine and Hygiene, 2016, 94, 302-313.	0.6	9
184	DevelopingPlasmodium vivaxResources for Liver Stage Study in the Peruvian Amazon Region. ACS Infectious Diseases, 2018, 4, 531-540.	1.8	9
185	Synthesis and Bioactivity of Phthalimide Analogs as Potential Drugs to Treat Schistosomiasis, a Neglected Disease of Poverty. Pharmaceuticals, 2020, 13, 25.	1.7	9
186	Investigation of the inÂvitro and inÂvivo efficacy of peptoid-based HDAC inhibitors with dual-stage antiplasmodial activity. European Journal of Medicinal Chemistry, 2021, 211, 113065.	2.6	8
187	Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Communications Biology, 2022, 5, 128.	2.0	8
188	The proteasome as a target: How not tidying up can have toxic consequences for parasitic protozoa. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10198-10200.	3.3	7
189	Aneuploidy—it's more common than you think. Nature Biotechnology, 2000, 18, 715-716.	9.4	6
190	In vivo profiles in malaria are consistent with a novel physiological state. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E70-E70.	3.3	6
191	8â€Aminoquinolines with an Aminoxyalkyl Side Chain Exert in vitro Dual‣tage Antiplasmodial Activity. ChemMedChem, 2019, 14, 501-511.	1.6	6
192	Transcriptional analysis of the Caulobacter 4.5 S RNA ffs gene and the physiological basis of an ffs mutant with a ts phenotype. Journal of Molecular Biology, 1997, 272, 665-676.	2.0	5
193	Using the genome to dissect the molecular basis of drug resistance. Future Microbiology, 2006, 1, 185-199.	1.0	5
194	Advances in Parasite Genomics: From Sequences to Regulatory Networks. PLoS Pathogens, 2009, 5, e1000649.	2.1	5
195	Substituted Aminoacetamides as Novel Leads for Malaria Treatment. ChemMedChem, 2019, 14, 1329-1335.	1.6	5
196	The Key Glycolytic Enzyme Phosphofructokinase Is Involved in Resistance to Antiplasmodial Glycosides. MBio, 2020, 11, .	1.8	5
197	3-Hydroxy-N′-arylidenepropanehydrazonamides with Halo-Substituted Phenanthrene Scaffolds Cure P. berghei Infected Mice When Administered Perorally. Journal of Medicinal Chemistry, 2017, 60, 6036-6044.	2.9	4
198	Longitudinal study of Plasmodium pathogens identifies new loci associated with artemisinin resistance. Genome Biology, 2017, 18, 79.	3.8	4

#	Article	IF	CITATIONS
199	The Novel bis-1,2,4-Triazine MIPS-0004373 Demonstrates Rapid and Potent Activity against All Blood Stages of the Malaria Parasite. Antimicrobial Agents and Chemotherapy, 2021, 65, e0031121.	1.4	4
200	A roadmap for malaria research. Science, 2019, 365, 753-754.	6.0	3
201	The Transcriptome of the Malaria Parasite <i>Plasmodium falciparum</i> ., 0, , 68-84.		3
202	Semi-Synthetic Analogues of Cryptolepine as a Potential Source of Sustainable Drugs for the Treatment of Malaria, Human African Trypanosomiasis, and Cancer. Frontiers in Pharmacology, 2022, 13, .	1.6	3
203	A comparison of match-only algorithms for the analysis of Plasmodium falciparum oligonucleotide arrays. International Journal for Parasitology, 2005, 35, 523-531.	1.3	2
204	Clycophorin alleles link to malaria protection. Science, 2017, 356, 1122-1123.	6.0	2
205	A Sleeping Area of Malaria Research Awakes. Cell Host and Microbe, 2018, 23, 292-295.	5.1	2
206	SnapShot: Antimalarial Drugs. Cell, 2020, 183, 554-554.e1.	13.5	2
207	Genome-Wide Dynamic Evaluation of the UV-Induced DNA Damage Response. G3: Genes, Genomes, Genetics, 2020, 10, 2981-2988.	0.8	1
208	Mining High-Throughput Screening Data by Novel Knowledge-Based Optimization Analysis. , 0, , 205-233.		1
209	Biochips in Malaria for Antiparasitic Discovery. Drug Discovery Series, 2006, , 35-50.	0.1	1
210	Flexing of DNA on the nucleosome core particle. , 1990, 1204, 297.		0
211	Further strategies for signature-tagged mutagenesis and the application of oligonucleotide microarrays for the quantification of DNA-tagged strains. Methods in Microbiology, 2002, 33, 167-184.	0.4	0
212	Systems biology and malaria. , 2004, , .		0
213	Plasmodium Circumsporozoite Protein Promotes the Development of the Liver Stages of the Parasite. Cell, 2008, 133, 375.	13.5	0
214	Chapter 4. Human Targets Repositioning and Cell-based Approaches for Antimalarial Discovery. RSC Drug Discovery Series, 2011, , 88-111.	0.2	0
215	An improbable journey: Creativity helped me make the transition from art to curing malaria. Journal of Biological Chemistry, 2019, 294, 405-409.	1.6	0

216 Genome-Wide Analysis of Gene Expression. , 2004, , 175-180.

#	Article	IF	CITATIONS
217	Advances in Parasite Genomics. , 2011, , 198-205.		0
218	Platypus ―A Streamlined Pipeline to Identify Plasmodium Genomic Variants, with Drug Development Applications. FASEB Journal, 2012, 26, lb239.	0.2	0