Perumal Alagarsamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4334394/publications.pdf

Version: 2024-02-01

279798 289244 2,133 129 23 40 citations g-index h-index papers 135 135 135 2033 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Triboelectrification based on NiO-Mg magnetic nanocomposite: Synthesis, device fabrication, and energy harvesting performance. Nano Energy, 2022, 91, 106662.	16.0	20
2	Significant effect of synthesis methodologies of metal-organic frameworks upon the additively manufactured dual-mode triboelectric nanogenerator towards self-powered applications. Nano Energy, 2022, 98, 107253.	16.0	30
3	NiO–Ti nanocomposites for contact electrification and energy harvesting: experimental and DFT+ <i>U</i> studies. Sustainable Energy and Fuels, 2022, 6, 2439-2448.	4.9	3
4	A Green Metal–Organic Framework yclodextrin MOF: A Novel Multifunctional Material Based Triboelectric Nanogenerator for Highly Efficient Mechanical Energy Harvesting. Advanced Functional Materials, 2021, 31, 2101829.	14.9	64
5	Large linear sensitivity of asymmetric structured giant magnetoresistive device with metastable bcc-Cu spacer and auxiliary biquadratic coupling through Rh spacer. Journal Physics D: Applied Physics, 2021, 54, 255004.	2.8	3
6	Room temperature ferromagnetism in Zn-doped NiO nanoparticles: An experimental and DFT+U approach. Journal of Alloys and Compounds, 2021, 868, 159176.	5 . 5	19
7	Size and strain induced phase formation and ferromagnetism in reduced TiO2 powders. Journal of Physics and Chemistry of Solids, 2021, 154, 110058.	4.0	5
8	Studies of Structural, Electrical, and Magnetic Characteristics of Double Perovskite Ceramic: La ₂ FeMnO ₆ . Physica Status Solidi (B): Basic Research, 2021, 258, 2100299.	1.5	7
9	Systematic investigation of the effect of layer thickness on the linear sensing characteristics of asymmetric structured CoFe/Rh/CoFe/Cu/CoFe fully epitaxial CIP-GMR based magnetic sensors. Journal of Magnetism and Magnetic Materials, 2021, 538, 168321.	2.3	3
10	Lead-free flexible Bismuth Titanate-PDMS composites: A multifunctional colossal dielectric material for hybrid piezo-triboelectric nanogenerator to sustainably power portable electronics. Nano Energy, 2021, 89, 106316.	16.0	61
11	Evolution of epsilon-near-zero plasmon with surface roughness and demonstration of perfect absorption in randomly rough indium tin oxide thin films. Journal of Applied Physics, 2021, 130, 173102.	2.5	4
12	Structural, vibrational and magnetic properties of NiO-(Mg,Ti) powders: The effect of reduction reaction. Journal of Magnetism and Magnetic Materials, 2020, 494, 165784.	2.3	5
13	Tuning magnetic anisotropy in Fe1-xNix thin films: The effects of composition and substrate temperature. AIP Conference Proceedings, 2020, , .	0.4	O
14	Experimental and first-principles study of defect-induced electronic and magnetic properties of ZnO nanocrystals. Journal of Physics and Chemistry of Solids, 2020, 146, 109580.	4.0	10
15	Investigation of NiO reduction dynamics and properties of NiO-Ti powders. Journal of Alloys and Compounds, 2020, 840, 155769.	5 . 5	3
16	Defect induced ferromagnetism in NiO nanocrystals: Insight from experimental and DFT+U study. Physica B: Condensed Matter, 2020, 593, 412319.	2.7	9
17	Microstructure, magnetic and transport properties of a Mn2CoAl Heusler compound. Acta Materialia, 2019, 176, 33-42.	7.9	35
18	Thickness dependent magneto-static and magneto-dynamic properties of CoFeB thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	10

#	Article	IF	Citations
19	Thickness-Dependent Thermal Oxidation of Ni into NiO Thin Films. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3761-3775.	1.8	13
20	Tuning the magnetic properties of stripe domain structured CoFeB films using stack structure with spacer layer thickness dependent interlayer coupling. Journal of Magnetism and Magnetic Materials, 2018, 448, 23-30.	2.3	12
21	Tuning Magnetic Properties of Thick CoFeB Film by Interlayer Coupling in Trilayer Structured Thin Films. Journal of Material Science & Engineering, 2018, 07, .	0.2	3
22	Interlayer coupling in symmetric and asymmetric CoFeB based trilayer films with different domain structures: Role of spacer layer and temperature. Journal of Magnetism and Magnetic Materials, 2018, 462, 29-40.	2.3	6
23	Influence of compositional variation on structural, electrical and magnetic characteristics of (Ba _{1â^'<i>x</i>} 1â^' <i>x</i> Fe _{<i>x</i>}) O ₃ (0.2) Tj ETÇ	2q 1.d 0.78	84 3& 4 rgBT /C
24	Mechanical activation on aluminothermic reduction and magnetic properties of NiO powders. Journal Physics D: Applied Physics, 2017, 50, 21LT01.	2.8	10
25	Effect of oxidation on the structural, vibrational, magnetic and electrical properties of Fe thin films. AIP Conference Proceedings, 2017, , .	0.4	0
26	Effects of composition, thickness and temperature on the magnetic properties of amorphous CoFeB thin films. Journal of Alloys and Compounds, 2017, 694, 823-832.	5.5	24
27	Effect of Mn doping on magnetic and dielectric properties of YFeO 3. Ceramics International, 2017, 43, 1323-1334.	4.8	65
28	Study of Exchange Bias in Mn-Doped YFeO3 Compound. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2165-2170.	1.8	8
29	Effect of annealing on structural and magnetic properties of Al substituted nanocrystalline Fe–Si–Co alloy powders. Journal of Magnetism and Magnetic Materials, 2016, 417, 62-68.	2.3	8
30	Magnetic properties of single-layer and multilayer structured Co40Fe40B20 thin films. Thin Solid Films, 2016, 616, 126-133.	1.8	4
31	Thickness dependent ferromagnetism in thermally decomposed NiO thin films. Journal of Magnetism and Magnetic Materials, 2016, 418, 86-91.	2.3	19
32	Growth Mechanism of Columnar Grains in FePt–C Granular Films for HAMR Media Processed by Compositionally Graded Sputtering. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	4
33	Temperature dependent magnetic coupling between ferromagnetic FeTaC layers in multilayer thin films. Journal of Magnetism and Magnetic Materials, 2016, 418, 21-29.	2.3	3
34	Perpendicular Standing Spin Wave and Magnetic Anisotropic Study on Amorphous FeTaC Films. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	9
35	Enhanced magnetic properties of NiO powders by the mechanical activation of aluminothermic reduction of NiO prepared by a ball milling process. Journal of Magnetism and Magnetic Materials, 2016, 418, 253-259.	2.3	9
36	Interlayer coupling dependent magnetic properties in amorphous and nanocrystalline FeTaC based multilayer thin films. Journal Physics D: Applied Physics, 2016, 49, 085001.	2.8	3

#	Article	IF	CITATIONS
37	Effect of heat treatment and spacer layer driven interlayer coupling in laminated type FeTaC thin films. Journal of Magnetism and Magnetic Materials, 2016, 401, 1015-1026.	2.3	3
38	Structure Optimization of FePt–C Nanogranular Films for Heat-Assisted Magnetic Recording Media. IEEE Transactions on Magnetics, 2016, 52, 1-8.	2.1	9
39	Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles. AIP Advances, 2015, 5, .	1.3	88
40	Structural and magnetic properties of Ni-Mn-Sn thin films. AIP Conference Proceedings, 2015, , .	0.4	0
41	Effect of underlayer on thickness dependent magnetic properties of Ni-Fe films. , 2015, , .		0
42	Effect of Ta Underlayer on Thickness-Dependent Magnetic Properties of Ni–Fe Films. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	6
43	Effect of annealing on the magnetic properties of ball milled NiO powders. Journal of Magnetism and Magnetic Materials, 2015, 384, 296-301.	2.3	18
44	Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure. AIP Advances, 2015, 5, 067157.	1.3	9
45	Structural and magnetic properties of nanocrystalline Fe–Co–Si alloy powders produced by mechanical alloying. Journal of Alloys and Compounds, 2015, 648, 658-666.	5 . 5	16
46	Evolution of Magnetic Properties of $\Phi_{CO}=0$ Follows (O), \$\${hbox{CaO}}\$hbox{-}{hbox{P}}_{2}{hbox{O}}_{5}\$hbox{-}{hbox{Na}}_{2}{hbox{O}}\$hbox{-}{hbox{Fe}}_{2}{Glass Upon Heat Treatment. IEEE Transactions on Magnetics, 2014, 50, 1-4.	[hb2ox{O}}	_{ 3} hbox{-}{
47	Critical behavior and magnetic entropy change at magnetic phase transitions in Ni 50 Mn 35 In 14 Si 1 ferromagnetic shape memory alloy. Europhysics Letters, 2014, 108, 66004.	2.0	10
48	Thermomagnetic properties of nanocrystalline Fe–Si alloys with high Si content. Physica B: Condensed Matter, 2014, 448, 60-63.	2.7	6
49	Study on the depth profile analysis of Fe/Co intermixing in [SmCo5/Fe]11 magnetic multilayers. Physica B: Condensed Matter, 2014, 448, 2-5.	2.7	0
50	Effect of Cobalt Doping on the Structural, Microstructure and Microwave Dielectric Properties of MgTiO3 Ceramics Prepared by Semi Alkoxide Precursor Method. Journal of the American Ceramic Society, 2014, 97, 1054-1059.	3.8	31
51	Magnetic properties of Co doped MgTiO3 ceramics. Physica B: Condensed Matter, 2014, 448, 330-332.	2.7	2
52	Finite Size Effects in Magnetic and Optical Properties of Antiferromagnetic NiO Nanoparticles. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	33
53	Estimation of entropy change at the first order martensitic transition in Ni–Mn–X based ferromagnetic shape memory alloys. Physica B: Condensed Matter, 2014, 448, 327-329.	2.7	15
54	Ferromagnetism and ferroelectricity in Fe doped BaTiO3. Physica B: Condensed Matter, 2014, 448, 204-206.	2.7	49

#	Article	IF	CITATIONS
55	Structural and Magnetic Properties of ${\textstyle \frac{Fe}_{100hbox{-}{m x}}{hbox{Si}}_{m x}} ($0le x) Tj ETQq1 1 Constant of the structural and Magnetic Properties of ${hbox{Fe}}_{100hbox{-}{m x}} ($0le x) Tj ETQq1 1 Constant of the structural and Magnetic Properties of ${hbox{Fe}}_{100hbox{-}{m x}} ($0le x) Tj ETQq1 1 Constant of the structural and Magnetic Properties of ${hbox{Fe}}_{100hbox{-}{m x}} ($0le x) Tj ETQq1 1 Constant of the structural and Magnetic Properties of ${hbox{Fe}}_{100hbox{-}{m x}} ($0le x) Tj ETQq1 1 Constant of the structural and Magnetic Properties of ${hbox{Fe}}_{100hbox{-}{m x}} ($0le x) Tj ETQq1 1 Constant of the structural and Magnetic Properties of ${hbox{Fe}}_{100hbox{-}{m x}} ($0le x) Tj ETQq1 1 Constant of the structural and Magnetic Properties of ${hbox{Fe}}_{100hbox{-}{m x}} ($0le x) Tj ETQq1 1 Constant of the structural and Magnetic Properties of ${hbox{Fe}}_{100hbox{-}{m x}} ($0le x) Tj ETQq1 1 Constant of the structural and Magnetic Properties of the st$).784314 r 2.1	gBJ /Overlo
56	Effect of Postannealing and Multilayer Structure on Soft Magnetic Properties of FeTaC Thin Film. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	2
57	Room temperature ferromagnetism in finite sized ZnO nanoparticles. Physica B: Condensed Matter, 2014, 448, 115-119.	2.7	11
58	Selected papers from International Conference on Magnetic Materials and Applications. Physica B: Condensed Matter, 2014, 448, iii.	2.7	0
59	Optical properties of ambient temperature grown nanocrystalline Mg2TiO4 thin films. Surface and Coatings Technology, 2013, 221, 196-200.	4.8	5
60	Influence of solidification rate and heat treatment on magnetic refrigerant properties of melt spun Ni51Mn34In14Si1 ribbons. Journal of Magnetism and Magnetic Materials, 2013, 344, 152-157.	2.3	22
61	Effect of annealing and atmosphere on the structure and optical properties of Mg ₂ TiO ₄ thin films obtained by the radio frequency magnetron sputtering method. Journal of Experimental Nanoscience, 2013, 8, 371-381.	2.4	9
62	Effect of particle size on the magneto-caloric properties of Ni51Mn34In14Si1 alloy. Journal of Alloys and Compounds, 2013, 572, 192-198.	5.5	20
63	Enhanced densification and microwave dielectric properties of Mg2TiO4 ceramics added with CeO2 nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 471-476.	3.5	33
64	Effect of Fe layer thickness and Fe/Co intermixing on the magnetic properties of Sm–Co/Fe bilayer exchange-spring magnets. Journal Physics D: Applied Physics, 2013, 46, 155002.	2.8	10
65	High Temperature Magnetic Properties of Indirect Exchange Spring FePt/M(Cu,C)/Fe Trilayer Thin Films. Journal of Nanomaterials, 2013, 2013, 1-9.	2.7	3
66	Spacer layer and temperature driven magnetic properties in multilayer structured FeTaC thin films. Journal Physics D: Applied Physics, 2013, 46, 445005.	2.8	9
67	Enhanced soft magnetic properties in stress free amorphous FeTaC/Ta multilayer thin films. , 2013, , .		0
68	Effect of Process Parameters and Post Annealing Temperature on Structural and Optical Properties of MgTiO3 Thin Films Deposited by RF Magnetron Sputtering. Springer Proceedings in Physics, 2013, , 291-300.	0.2	4
69	Magnetic refrigerant properties of Ni50Mn37-xFexSn13 alloy at low magnetic fields. , 2012, , .		0
70	Thickness dependent magnetic properties of amorphous FeTaC films. Journal of Applied Physics, 2012, 111, 093915.	2.5	14
71	MICROSTRUCTURAL CHANGES UPON ANNEALING AND IT'S EFFECT ON MAGNETIC AND MECHANICAL PROPERTIES OF NANOSIZED COBALTâ€"FERRITE. International Journal of Nanoscience, 2012, 11, 1250005.	0.7	3

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</p>
id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mtext><0Fe</mml:mtext></mml:mrow><mml:mtext>2</mml:msub></mml:msub></mml:msub>
Nanocomposites as Photocatalyst for the Degradation of Methy. Journal of Nanotechnology, 2012, 2012, 1-6.

#	Article	IF	CITATIONS
73	Room temperature ferromagnetism in Co doped ZnO within an optimal doping level of 5%. Materials Research Bulletin, 2012, 47, 1417-1422.	5.2	30
74	TEMPERATURE DEPENDENT COERCIVITY AND RELAXATION PHENOMENA IN AMORPHOUSFe–(Mn)–Zr–BNANOPARTICLES. International Journal of Nanoscience, 2011, 10, 605-609.	0.7	2
75	Neutron powder diffraction studies and magnetic properties in Nd1â^'xKxMnO3 (x = 0.15 and 0.20) compounds. Journal of Applied Physics, 2011, 109, 07E150.	2.5	1
76	Effect of Co and Cu substitution on the magnetic entropy change in Ni46Mn43Sn11 alloy. Journal of Applied Physics, 2011, 109, .	2.5	39
77	Hierarchical Assembly of Sm ₂ Co ₇ /Co Magnetic Nanoparticles into Highly Stable and Uniform Nanospheres. Journal of Nanoscience and Nanotechnology, 2011, 11, 3706-3710.	0.9	4
78	Enhanced soft magnetic properties in multilayer structured amorphous Fe-Ta-C films. Journal of Applied Physics, 2011, 109, 07A304.	2.5	9
79	Evaluation of Ni–Mn–In–Si Alloys for Magnetic Refrigerant Application. IEEE Transactions on Magnetics, 2011, 47, 2463-2465.	2.1	7
80	Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co2+ doped TiO2 nanoparticles. Journal of Magnetism and Magnetic Materials, 2011, 323, 440-446.	2.3	81
81	Thin magnetic films of Sm–Co nanocrystallites exploiting spin coating deposition. Thin Solid Films, 2011, 519, 6290-6296.	1.8	5
82	Enhanced Magnetocaloric Effect In Cobalt Substituted Ni-Mn-Ga Alloys. , 2011, , .		0
83	Influence of Synthesis Processes on Microstructure and Magnetic Properties in Fe[sub 70]Co[sub 30] Alloy Nanoparticles., 2011,,.		2
84	ROLE OF MICROSTRUCTURE AND DOMAIN STRUCTURE ON THE SOFT MAGNETIC PROPERTIES OF MAGNETIC FIELD ANNEALED Fe89-xZr11Bx ALLOYS. International Journal of Nanoscience, 2011, 10, 301-305.	0.7	0
85	L10-ordered high coercivity (FePt)Ag–C granular thin films for perpendicular recording. Journal of Magnetism and Magnetic Materials, 2010, 322, 2658-2664.	2.3	173
86	Critical behavior studies in ferromagnetic (Nd, K)–Mn–O compounds. Journal of Magnetism and Magnetic Materials, 2010, 322, 3391-3395.	2.3	8
87	Enhanced soft magnetic properties and magnetocaloric effect in B substituted amorphous Fe–Zr alloy ribbons. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 175, 253-260.	3.5	52
88	FePtAg–C nanogranular films fabricated on a heat resistant glass substrate for perpendicular magnetic recording. Journal of Applied Physics, 2010, 108, 083907.	2.5	17
89	One-Step Synthesis of Sm-Co Spherical Granules via Superhydride Reduction. Advanced Science Letters, 2010, 3, 49-52.	0.2	8
90	Microstructures and magnetic properties of rapidly solidified Ni54Fe27â^2xGa19+2x ferromagnetic Heusler alloys. Journal of Applied Physics, 2009, 105, 07A943.	2.5	7

#	Article	IF	CITATIONS
91	High temperature coercive field behavior of Fe–Zr powder. Journal of Applied Physics, 2009, 105, 07A306.	2.5	2
92	Evolution of atomic order and soft magnetism in mechanically alloyed nanocrystalline Fe–Si powders subjected to heat treatment. Journal Physics D: Applied Physics, 2009, 42, 105001.	2.8	7
93	 <i>N</i> -oxide bridged manganese(II) coordination polymers. Journal of Coordination Chemistry, 2009, 62, 1513-1524.	2.2	17
94	Effect of Co or Mn addition on the soft magnetic properties of amorphous Fe89â^'xZr11Bx (x=5, 10) alloy ribbons. Journal of Magnetism and Magnetic Materials, 2009, 321, 4097-4102.	2.3	17
95	Fe–Ta–C soft underlayer for double-layered perpendicular recording media. Journal of Applied Physics, 2009, 105, 07A304.	2.5	14
96	FePt-C nanogranular films for perpendicular magnetic recording. Journal of Applied Physics, 2009, 105,	2.5	30
97	Mixing characterization of mechanically milled Fe75Si15M10 powders using Mössbauer spectroscopy. Hyperfine Interactions, 2008, 184, 147-153.	0.5	3
98	Structure and magnetic properties of nanocrystalline Fe75Si25 powders prepared by mechanical alloying. Journal of Magnetism and Magnetic Materials, 2008, 320, 2780-2783.	2.3	49
99	High temperature magnetic properties of mechanically alloyed Fe–Zr powder. Materials Letters, 2008, 62, 2640-2642.	2.6	2
100	Magnetic properties of mechanically alloyed Fe100â^'xZrx(20 â@ $\frac{1}{2}$ xâ@ $\frac{1}{2}$ 35) powder. Journal Physics D: Applied Physics, 2008, 41, 215003.	2.8	11
101	Structural, Kinetic And Magnetic Properties Of Mechanically Alloyed Fe-Zr Powders. AIP Conference Proceedings, 2008, , .	0.4	O
102	Microstructure and magnetic properties of nanocrystalline Fe75Si2OM5(M= Al, B, Cr) powders. Journal Physics D: Applied Physics, 2008, 41, 165002.	2.8	4
103	Particulate structure of L10 ordered ultrathin FePt films for perpendicular recording. Applied Physics Letters, 2008, 92, .	3.3	75
104	Properties of Nanocrystalline Fe75Si15M10 (Mâ€"Cr and Al) Powders Prepared by Mechanical Alloying. Journal of Nanoscience and Nanotechnology, 2008, 8, 4314-4317.	0.9	3
105	Structural analysis of mechanically alloyed nanocrystalline Fe75Si15Al10 powders. Materials Letters, 2007, 61, 824-826.	2.6	19
106	Critical behavior studies in La1–xAgxMnO3 double-exchange ferromagnet. Physica Status Solidi (B): Basic Research, 2006, 243, 1908-1913.	1.5	21
107	Low temperature noncollinear behavior in FePt nanogranular thin film system. Thin Solid Films, 2006, 510, 280-285.	1.8	1
108	Annealing effect on magnetic property and recording performance of [FePt/MgO]n perpendicular magnetic recording media. Journal of Magnetism and Magnetic Materials, 2005, 286, 306-310.	2.3	8

#	Article	lF	Citations
109	High-density perpendicular magnetic recording media of granular-type (FePt/MgO)/soft underlayer. IEEE Transactions on Magnetics, 2005, 41, 555-559.	2.1	43
110	Double-layered perpendicular magnetic recording media of granular-type FePt–MgO films. Journal of Magnetism and Magnetic Materials, 2005, 287, 224-228.	2.3	11
111	Reentrant behavior of amorphous FeMnZr alloys. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 100-103.	2.3	3
112	Evidence for spin-fluctuation scattering in reentrant amorphous FeMnZr alloys. Physica B: Condensed Matter, 2003, 327, 415-418.	2.7	0
113	Magnetic properties of carbon-doped FePt nanogranular films. Applied Physics Letters, 2003, 83, 3326-3328.	3.3	44
114	Quenched Disorder and the Critical Behavior of a Partially Frustrated System. Physical Review Letters, 2003, 91, 137202.	7.8	67
115	Perpendicular thin films of carbon-doped FePt for ultrahigh-density magnetic recording media. IEEE Transactions on Magnetics, 2003, 39, 2320-2322.	2.1	15
116	Critical behavior of weak itinerant ferromagnet Fe90â 'xMnxZr10(0<~x<~16) alloys. Physical Review B, 2003, 67, .	3.2	10
117	Electrical transport and magnetotransport studies in WEAK ITINERANT amorphousFe90â^xMnxZr10(0<-x<-16)alloys. Physical Review B, 2003, 68, .	3.2	4
118	Anisotropic magnetoresistance in a-Fe90â^'xMnxZr10 alloys (x=0â€"12). Journal of Applied Physics, 2003, 93, 7272-7274.	2.5	2
119	Fine control of L10 ordering and grain growth kinetics by C doping in FePt films. Applied Physics Letters, 2003, 82, 2311-2313.	3.3	52
120	Magnetic properties of amorphousFe90â^'xMnxZr10(0<~x<~12)alloys. Physical Review B, 2002, 65, .	3.2	21
121	Dynamics of magnetic susceptibility in amorphous Fe80Mn10Zr10. Journal of Alloys and Compounds, 2001, 326, 288-291.	5. 5	2
122	Critical behavior of electrical resistivity in amorphous Fe-Zr alloys. Pramana - Journal of Physics, 2001, 56, 569-577.	1.8	4
123	Low field ac response in Mn substituted amorphous Fe–Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 1004-1007.	5.6	2
124	Spin fluctuations in reentrant a-Fe90â^'cMncZr10 alloys. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1329-1331.	2.3	3
125	Correction to scaling critical exponents and amplitudes for amorphous Fe–Mn–Zr alloys. Journal of Magnetism and Magnetic Materials, 2001, 233, 280-289.	2.3	13
126	An ac Susceptibility Study of Mn Substituted Amorphous FeZr Alloys. Physica Status Solidi A, 2000, 178, 783-791.	1.7	7

#	Article	IF	CITATIONS
127	Critical behavior of Mn-substituted a-FeZr alloys. Physica B: Condensed Matter, 2000, 292, 164-172.	2.7	10
128	Chemical colouring of aluminium. Surface Technology, 1984, 22, 15-20.	0.4	5
129	<i>L</i> 1 ₀ FePt–C Nanogranular Perpendicular Anisotropy Films with Narrow Size Distribution. Applied Physics Express, 0, 1, 101301.	2.4	76