
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4334343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The EXIMIOUS project—Mapping exposure-induced immune effects: connecting the exposome and the immunome. Environmental Epidemiology, 2022, 6, e193.	3.0	8
2	Mouse innate-like B-1 lymphocytes promote inhaled particle-induced in vitro granuloma formation and inflammation in conjunction with macrophages. Archives of Toxicology, 2022, 96, 585-599.	4.2	4
3	Chronic Pseudomonas aeruginosa Lung Infection Is IL-1R Independent, but Relies on MyD88 Signaling. ImmunoHorizons, 2021, 5, 273-283.	1.8	0
4	Interpreting Immunoregulation in Lung Fibrosis: A New Branch of the Immune Model. Frontiers in Immunology, 2021, 12, 690375.	4.8	13
5	Monocytic Ontogeny of Regenerated Macrophages Characterizes the Mesotheliomagenic Responses to Carbon Nanotubes. Frontiers in Immunology, 2021, 12, 666107.	4.8	5
6	Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization. Biomolecules, 2020, 10, 1585.	4.0	33
7	Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. Applied Sciences (Switzerland), 2020, 10, 4513.	2.5	9
8	The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity?. Particle and Fibre Toxicology, 2019, 16, 32.	6.2	72
9	HIF-1α is a key mediator of the lung inflammatory potential of lithium-ion battery particles. Particle and Fibre Toxicology, 2019, 16, 35.	6.2	9
10	Absence of early metabolic response assessed by 18F-FDG PET/CT after initiation of antifibrotic drugs in IPF patients. Respiratory Research, 2019, 20, 10.	3.6	38
11	Aggregated Tau activates NLRP3–ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathologica, 2019, 137, 599-617.	7.7	259
12	Cationic Nanoliposomes Are Efficiently Taken up by Alveolar Macrophages but Have Little Access to Dendritic Cells and Interstitial Macrophages in the Normal and CpG-Stimulated Lungs. Molecular Pharmaceutics, 2019, 16, 2048-2059.	4.6	9
13	New interplay between interstitial and alveolar macrophages explains pulmonary alveolar proteinosis (PAP) induced by indium tin oxide particles. Archives of Toxicology, 2018, 92, 1349-1361.	4.2	17
14	Innate immunity to inhaled particles: A new paradigm of collective recognition. Current Opinion in Toxicology, 2018, 10, 84-90.	5.0	4
15	Emerging Role of Immunosuppression in Diseases Induced by Micro- and Nano-Particles: Time to Revisit the Exclusive Inflammatory Scenario. Frontiers in Immunology, 2018, 9, 2364.	4.8	28
16	Vardenafil reduces macrophage pro-inflammatory overresponses in cystic fibrosis through PDE5- and CFTR-dependent mechanisms. Clinical Science, 2017, 131, 1107-1121.	4.3	13
17	Can serum cytokine profile discriminate irritant-induced and allergen-induced symptoms? A cross-sectional study in workers mostly exposed to laboratory animals. Occupational and Environmental Medicine, 2017, 74, 592-600.	2.8	1
18	CCR2 ⁺ monocytic myeloidâ€derived suppressor cells (Mâ€MDSCs) inhibit collagen degradation and promote lung fibrosis by producing transforming growth factorâ€Î²1. Journal of Pathology, 2017, 243, 320-330.	4.5	44

#	Article	IF	CITATIONS
19	Association of Endotoxin and Allergens with Respiratory and Skin Symptoms: A Descriptive Study in Laboratory Animal Workers. Annals of Work Exposures and Health, 2017, 61, 822-835.	1.4	4
20	Azithromycin Attenuates Pseudomonas-Induced Lung Inflammation by Targeting Bacterial Proteins Secreted in the Cultured Medium. Frontiers in Immunology, 2016, 7, 499.	4.8	10
21	Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. Journal of Neuroinflammation, 2016, 13, 20.	7.2	73
22	The complex cascade of cellular events governing inflammasome activation and IL-1Î ² processing in response to inhaled particles. Particle and Fibre Toxicology, 2015, 13, 40.	6.2	68
23	Mesothelioma response to carbon nanotubes is associated with an early and selective accumulation of immunosuppressive monocytic cells. Particle and Fibre Toxicology, 2015, 13, 46.	6.2	37
24	<scp>lL</scp> â€lα induces <scp>CD11b^{low}</scp> alveolar macrophage proliferation and maturation during granuloma formation. Journal of Pathology, 2015, 235, 698-709.	4.5	46
25	Regulation of Macrophage Motility by the Water Channel Aquaporin-1: Crucial Role of M0/M2 Phenotype Switch. PLoS ONE, 2015, 10, e0117398.	2.5	28
26	PET/CT with ¹⁸ F-FDG– and ¹⁸ F-FBEM–Labeled Leukocytes for Metabolic Activity and Leukocyte Recruitment Monitoring in a Mouse Model of Pulmonary Fibrosis. Journal of Nuclear Medicine, 2015, 56, 127-132.	5.0	45
27	Age influence on mice lung tissue response to <i>Aspergillus fumigatus</i> chronic exposure. Annals of Agricultural and Environmental Medicine, 2015, 22, 69-75.	1.0	3
28	Uncoupling between Inflammatory and Fibrotic Responses to Silica: Evidence from MyD88 Knockout Mice. PLoS ONE, 2014, 9, e99383.	2.5	39
29	PDGF-D Expression Is Down-Regulated by TGFÎ ² in Fibroblasts. PLoS ONE, 2014, 9, e108656.	2.5	17
30	The alarmin IL- $1\hat{l}$ ± is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Particle and Fibre Toxicology, 2014, 11, 69.	6.2	118
31	Lung inflammation in cystic fibrosis: Pathogenesis and novel therapies. Clinical Biochemistry, 2014, 47, 539-546.	1.9	45
32	Occupational asthma phenotypes identified by increased fractional exhaled nitric oxide after exposure to causal agents. Journal of Allergy and Clinical Immunology, 2014, 134, 1063-1067.	2.9	56
33	Critical Role of Aquaporins in Interleukin $1^{\hat{l}2}$ (IL- $1^{\hat{l}2}$)-induced Inflammation. Journal of Biological Chemistry, 2014, 289, 13937-13947.	3.4	65
34	CD4+ T lymphocytes in lung fibrosis: diverse subsets, diverse functions. Journal of Leukocyte Biology, 2013, 93, 499-510.	3.3	56
35	Dysregulated Proinflammatory and Fibrogenic Phenotype of Fibroblasts in Cystic Fibrosis. PLoS ONE, 2013, 8, e64341.	2.5	31
36	Lung fibrosis induced by crystalline silica particles is uncoupled from lung inflammation in NMRI mice. Toxicology Letters, 2011, 203, 127-134.	0.8	48

#	Article	IF	CITATIONS
37	IL-1 and IL-23 Mediate Early IL-17A Production in Pulmonary Inflammation Leading to Late Fibrosis. PLoS ONE, 2011, 6, e23185.	2.5	180
38	Platelet-Derived Growth Factor–Producing CD4 ⁺ Foxp3 ⁺ Regulatory T Lymphocytes Promote Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1270-1281.	5.6	103
39	Type I Interferon Signaling Contributes to Chronic Inflammation in a Murine Model of Silicosis. Toxicological Sciences, 2010, 116, 682-692.	3.1	33
40	IL-17A–Producing γî^T and Th17 Lymphocytes Mediate Lung Inflammation but Not Fibrosis in Experimental Silicosis. Journal of Immunology, 2010, 184, 6367-6377.	0.8	131
41	Influence of size, surface area and microporosity on the <i>in vitro</i> cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicology, 2010, 4, 307-318.	3.0	122
42	Sintered Indium-Tin-Oxide (ITO) Particles: A New Pneumotoxic Entity. Toxicological Sciences, 2009, 108, 472-481.	3.1	98
43	Absence of Carcinogenic Response to Multiwall Carbon Nanotubes in a 2-Year Bioassay in the Peritoneal Cavity of the Rat. Toxicological Sciences, 2009, 110, 442-448.	3.1	229
44	Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Toxicological Aspects. Chemical Research in Toxicology, 2008, 21, 1698-1705.	3.3	246
45	Type 2 immune response associated with silicosis is not instrumental in the development of the disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L107-L113.	2.9	23
46	Profibrotic Effect of IL-9 Overexpression in a Model of Airway Remodeling. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 202-209.	2.9	52
47	New developments in the understanding of immunology in silicosis. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 168-173.	2.3	152
48	Respiratory toxicity of multi-wall carbon nanotubes. Toxicology and Applied Pharmacology, 2005, 207, 221-231.	2.8	1,028
49	Pulmonary overexpression of IL-10 augments lung fibrosis and Th2 responses induced by silica particles. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L841-L848.	2.9	106
50	Role of Eotaxin-1 (CCL11) and CC Chemokine Receptor 3 (CCR3) in Bleomycin-Induced Lung Injury and Fibrosis. American Journal of Pathology, 2005, 167, 1485-1496.	3.8	101
51	IL-9 Protects against Bleomycin-Induced Lung Injury. American Journal of Pathology, 2005, 166, 107-115.	3.8	25
52	The role of pro- and anti-inflammatory responses in silica-induced lung fibrosis. Respiratory Research, 2005, 6, 112.	3.6	100
53	Characterization of the Effect of Interleukin-10 on Silica-Induced Lung Fibrosis in Mice. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 78-85.	2.9	67
54	Markers of macrophage differentiation in experimental silicosis. Journal of Leukocyte Biology, 2004, 76, 926-932.	3.3	72

#	Article	IF	CITATIONS
55	Eosinophils and T Lymphocytes Possess Distinct Roles in Bleomycin-Induced Lung Injury and Fibrosis. Journal of Immunology, 2003, 171, 5470-5481.	0.8	97
56	Dual Roles of IL-4 in Lung Injury and Fibrosis. Journal of Immunology, 2003, 170, 2083-2092.	0.8	213
57	A Profibrotic Function of IL-12p40 in Experimental Pulmonary Fibrosis. Journal of Immunology, 2002, 169, 2653-2661.	0.8	77
58	Interleukin-9 Reduces Lung Fibrosis and Type 2 Immune Polarization Induced by Silica Particles in a Murine Model. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 368-375.	2.9	93
59	Soluble Tumor Necrosis Factor (TNF) Receptors p55 and p75 and Interleukin-10 Downregulate TNF- α Activity during the Lung Response to Silica Particles in NMRI Mice. American Journal of Respiratory Cell and Molecular Biology, 1999, 21, 137-145.	2.9	29
60	Lung Fibrosis Induced by Silica Particles in NMRI Mice Is Associated with an Upregulation of the p40 Subunit of Interleukin-12 and Th-2 Manifestations. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 561-572.	2.9	55
61	IL-9 induces chemokine expression in lung epithelial cells and baseline airway eosinophilia in transgenic mice. European Journal of Immunology, 1999, 29, 2130-2139.	2.9	119
62	Role of Interleukin-10 in the Lung Response to Silica in Mice. American Journal of Respiratory Cell and Molecular Biology, 1998, 18, 51-59.	2.9	116
63	Think Beyond Particle Cytotoxicity: When Self-Cellular Components Released After Immunogenic Cell Death Explain Chronic Disease Development. Frontiers in Toxicology, 0, 4, .	3.1	3