Sergio Fagherazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4334256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coastal eutrophication as a driver of salt marsh loss. Nature, 2012, 490, 388-392.	13.7	814
2	Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 2016, 6, 253-260.	8.1	556
3	Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics, 2012, 50, .	9.0	511
4	A numerical model for the coupled longâ€ŧerm evolution of salt marshes and tidal flats. Journal of Geophysical Research, 2010, 115, .	3.3	252
5	Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the United States of America, 2006, 103, 8337-8341.	3.3	222
6	Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proceedings of the United States of America, 2013, 110, 5353-5356.	3.3	220
7	A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 64-68.	3.3	211
8	Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013. Geomorphology, 2016, 268, 123-132.	1.1	184
9	Tidal networks: 2. Watershed delineation and comparative network morphology. Water Resources Research, 1999, 35, 3905-3917.	1.7	171
10	Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature Communications, 2017, 8, 14156.	5.8	167
11	Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resources Research, 1999, 35, 3891-3904.	1.7	149
12	Marsh Collapse Does Not Require Sea Level Rise. Oceanography, 2013, 26, 70-77.	0.5	149
13	Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research, 2005, 110, .	3.3	146
14	Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuarine, Coastal and Shelf Science, 2006, 69, 311-324.	0.9	143
15	Importance of wind conditions, fetch, and water levels on waveâ€generated shear stresses in shallow intertidal basins. Journal of Geophysical Research, 2009, 114, .	3.3	135
16	Tidal networks: 3. Landscape-forming discharges and studies in empirical geomorphic relationships. Water Resources Research, 1999, 35, 3919-3929.	1.7	133
17	Dynamics of river mouth deposits. Reviews of Geophysics, 2015, 53, 642-672.	9.0	133
18	Sea Level Rise and the Dynamics of the Marsh-Upland Boundary. Frontiers in Environmental Science, 2019, 7, .	1.5	120

Sergio Fagherazzi

#	Article	IF	CITATIONS
19	On the shape and widening of salt marsh creeks. Journal of Geophysical Research, 2001, 106, 991-1003.	3.3	118
20	A combined wind wave-tidal model for the Venice lagoon, Italy. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	113
21	Influence of storm surges and sea level on shallow tidal basin erosive processes. Journal of Geophysical Research, 2010, 115, .	3.3	108
22	Lateral Marsh Edge Erosion as a Source of Sediments for Vertical Marsh Accretion. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2444-2465.	1.3	104
23	The effect of bidirectional flow on tidal channel planforms. Earth Surface Processes and Landforms, 2004, 29, 295-309.	1.2	100
24	Modeling wave impact on salt marsh boundaries. Journal of Geophysical Research, 2010, 115, .	3.3	92
25	The legacy of initial conditions in landscape evolution. Earth Surface Processes and Landforms, 2012, 37, 52-63.	1.2	87
26	Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats. Journal of Geophysical Research, 2007, 112, .	3.3	86
27	Stability of creeping soil and implications for hillslope evolution. Water Resources Research, 2001, 37, 2607-2618.	1.7	82
28	Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecological Processes, 2013, 2, .	1.6	82
29	Effect of tides on mouth bar morphology and hydrodynamics. Journal of Geophysical Research: Oceans, 2013, 118, 4169-4183.	1.0	82
30	Models of Deltaic and Inner Continental Shelf Landform Evolution. Annual Review of Earth and Planetary Sciences, 2007, 35, 685-715.	4.6	81
31	Linking the infilling of the North Branch in the Changjiang (Yangtze) estuary to anthropogenic activities from 1958 to 2013. Marine Geology, 2016, 379, 1-12.	0.9	80
32	How waves shape salt marshes. Geology, 2014, 42, 887-890.	2.0	76
33	Salt Marsh Dynamics in a Period of Accelerated Sea Level Rise. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005200.	1.0	76
34	Geomorphic structure of tidal hydrodynamics in salt marsh creeks. Water Resources Research, 2008, 44, .	1.7	75
35	Alongshore sediment bypassing as a control on river mouth morphodynamics. Journal of Geophysical Research F: Earth Surface, 2016, 121, 664-683.	1.0	73
36	Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications, 2016, 7, 12287.	5.8	73

#	Article	IF	CITATIONS
37	Influence of vegetation on spatial patterns of sediment deposition in deltaic islands during flood. Advances in Water Resources, 2016, 93, 236-248.	1.7	73
38	Dramatic variations in emergent wetland area in China's largest freshwater lake, Poyang Lake. Advances in Water Resources, 2016, 96, 1-10.	1.7	72
39	Selfâ€organization of shallow basins in tidal flats and salt marshes. Journal of Geophysical Research, 2007, 112, .	3.3	71
40	Self-organization of tidal deltas. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18692-18695.	3.3	71
41	Interactions between barrier islands and backbarrier marshes affect island system response to sea level rise: Insights from a coupled model. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2013-2031.	1.0	70
42	Classification mapping of salt marsh vegetation by flexible monthly NDVI time-series using Landsat imagery. Estuarine, Coastal and Shelf Science, 2018, 213, 61-80.	0.9	69
43	Potential for landsliding: Dependence on hyetograph characteristics. Journal of Geophysical Research, 2005, 110, .	3.3	67
44	The effect of wind waves on the development of river mouth bars. Geophysical Research Letters, 2012, 39, .	1.5	66
45	Salt marsh erosion rates and boundary features in a shallow Bay. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1861-1875.	1.0	64
46	Morphological barrier island changes and recovery of dunes after Hurricane Dennis, St. George Island, Florida. Geomorphology, 2010, 114, 614-626.	1.1	63
47	A stochastic model for the formation of channel networks in tidal marshes. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	62
48	Flow, Sedimentation, and Biomass Production on a Vegetated Salt Marsh in South Carolina: Toward a Predictive Model of Marsh Morphologic and Ecologic Evolution. Coastal and Estuarine Studies, 0, , 165-188.	0.4	60
49	Interplay between river discharge and tides in a delta distributary. Advances in Water Resources, 2015, 80, 69-78.	1.7	60
50	Nonlinear Dynamics and Alternative Stable States in Shallow Coastal Systems. Oceanography, 2013, 26, 220-231.	0.5	57
51	A probabilistic model of rainfall-triggered shallow landslides in hollows: A long-term analysis. Water Resources Research, 2003, 39, .	1.7	54
52	Wind waves on a mudflat: The influence of fetch and depth on bed shear stresses. Continental Shelf Research, 2013, 60, S99-S110.	0.9	53
53	The ephemeral life of a salt marsh. Geology, 2013, 41, 943-944.	2.0	53
54	Success of coastal wetlands restoration is driven by sediment availability. Communications Earth & Environment, 2021, 2, .	2.6	53

#	Article	IF	CITATIONS
55	Growth of river mouth bars in sheltered bays in the presence of frontal waves. Journal of Geophysical Research F: Earth Surface, 2013, 118, 872-886.	1.0	52
56	Application of a barrier island translation model to the millennial-scale evolution of Sand Key, Florida. Continental Shelf Research, 2008, 28, 1116-1126.	0.9	51
57	One-dimensional numerical modeling of the long-term morphodynamic evolution of a tidally-dominated estuary: The Lower Fly River (Papua New Guinea). Sedimentary Geology, 2014, 301, 107-119.	1.0	51
58	Effect of local variability in erosional resistance on largeâ€scale morphodynamic response of salt marshes to wind waves and extreme events. Geophysical Research Letters, 2015, 42, 5872-5879.	1.5	51
59	Salt Marsh Loss Affects Tides and the Sediment Budget in Shallow Bays. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2647-2662.	1.0	51
60	Tsunamigenic incisions produced by the December 2004 earthquake along the coasts of Thailand, Indonesia and Sri Lanka. Geomorphology, 2008, 99, 120-129.	1.1	50
61	Importance of frictional effects and jet instability on the morphodynamics of river mouth bars and levees. Journal of Geophysical Research: Oceans, 2014, 119, 509-522.	1.0	49
62	Coupled Wave Energy and Erosion Dynamics along a Salt Marsh Boundary, Hog Island Bay, Virginia, USA. Journal of Marine Science and Engineering, 2015, 3, 1041-1065.	1.2	49
63	Improving Predictions of Salt Marsh Evolution Through Better Integration of Data and Models. Annual Review of Marine Science, 2020, 12, 389-413.	5.1	49
64	Intense Storms Increase the Stability of Tidal Bays. Geophysical Research Letters, 2018, 45, 5491-5500.	1.5	48
65	Sediments and water fluxes in a muddy coastline: interplay between waves and tidal channel hydrodynamics. Earth Surface Processes and Landforms, 2010, 35, 284-293.	1.2	47
66	Storm-proofing with marshes. Nature Geoscience, 2014, 7, 701-702.	5.4	47
67	Determining the drivers of suspended sediment dynamics in tidal marsh-influenced estuaries using high-resolution ocean color remote sensing. Remote Sensing of Environment, 2020, 240, 111682.	4.6	45
68	Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong River Delta, Vietnam. Earth Surface Processes and Landforms, 2016, 41, 2024-2037.	1.2	42
69	Tidal hydrodynamics and erosional power in the Fly River delta, Papua New Guinea. Journal of Geophysical Research, 2010, 115, .	3.3	41
70	Asymmetric fluxes of water and sediments in a mesotidal mudflat channel. Continental Shelf Research, 2011, 31, 23-36.	0.9	41
71	The relationships among hydrodynamics, sediment distribution, and chlorophyll in a mesotidal estuary. Estuarine, Coastal and Shelf Science, 2014, 144, 54-64.	0.9	41
72	Numerical Solution of the Dam-Break Problem with a Discontinuous Galerkin Method. Journal of Hydraulic Engineering, 2004, 130, 532-539.	0.7	40

#	Article	IF	CITATIONS
73	Sediment eddy diffusivity in meandering turbulent jets: Implications for levee formation at river mouths. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1908-1920.	1.0	40
74	Modeling the effect of tides and waves on benthic biofilms. Journal of Geophysical Research, 2012, 117, .	3.3	39
75	Tradeoffs among hydrodynamics, sediment fluxes and vegetation community in the Virginia Coast Reserve, USA. Estuarine, Coastal and Shelf Science, 2018, 210, 98-108.	0.9	39
76	Numerical simulations of transportational cyclic steps. Computers and Geosciences, 2003, 29, 1143-1154.	2.0	38
77	Modeling fluvial erosion and deposition on continental shelves during sea level cycles. Journal of Geophysical Research, 2004, 109, .	3.3	37
78	Soil creep in salt marshes. Geology, 2016, 44, 459-462.	2.0	36
79	Temporal patterns in species zonation in a mangrove forest in the Mekong Delta, Vietnam, using a time series of Landsat imagery. Continental Shelf Research, 2017, 147, 144-154.	0.9	36
80	Buried Alive or Washed Away: The Challenging Life of Mangroves in the Mekong Delta. Oceanography, 2017, 30, 48-59.	0.5	36
81	The role of cross-shore tidal dynamics in controlling intertidal sediment exchange in mangroves in Cù Lao Dung, Vietnam. Continental Shelf Research, 2017, 147, 128-143.	0.9	35
82	Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor'easters. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 832-849.	1.3	34
83	Mudflat runnels: Evidence and importance of very shallow flows in intertidal morphodynamics. Geophysical Research Letters, 2012, 39, .	1.5	33
84	Channelsâ€ŧidal flat sediment exchange: The channel spillover mechanism. Journal of Geophysical Research, 2012, 117, .	3.3	33
85	A twoâ€point dynamic model for the coupled evolution of channels and tidal flats. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1387-1399.	1.0	32
86	Tidal flow field in a small basin. Journal of Geophysical Research, 2003, 108, .	3.3	31
87	Sea-level rise and storm surges structure coastal forests into persistence and regeneration niches. PLoS ONE, 2019, 14, e0215977.	1.1	30
88	Fate of cohesive sediments in a marsh-dominated estuary. Advances in Water Resources, 2019, 125, 32-40.	1.7	29
89	Seagrass Impact on Sediment Exchange Between Tidal Flats and Salt Marsh, and The Sediment Budget of Shallow Bays. Geophysical Research Letters, 2018, 45, 4933-4943.	1.5	28
90	Hydrodynamic and geomorphic adjustments of channel bars in the Yichang-Chenglingji Reach of the Middle Yangtze River in response to the Three Gorges Dam operation. Catena, 2020, 193, 104628.	2.2	28

#	Article	IF	CITATIONS
91	Application of the discontinuous spectral Galerkin method to groundwater flow. Advances in Water Resources, 2004, 27, 129-140.	1.7	27
92	Morphology and hydrodynamics of wave-cut gullies. Geomorphology, 2011, 131, 1-13.	1.1	26
93	A Positive Feedback Between Sediment Deposition and Tidal Prism May Affect the Morphodynamic Evolution of Tidal Deltas. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2767-2783.	1.0	26
94	Are Elevation and Openâ€Water Conversion of Salt Marshes Connected?. Geophysical Research Letters, 2020, 47, e2019GL086703.	1.5	26
95	Climate change leads to a doubling of turbidity in a rapidly expanding Tibetan lake. Science of the Total Environment, 2019, 688, 952-959.	3.9	24
96	Changes in hydrodynamics and wave energy as a result of seagrass decline along the shoreline of a microtidal back-barrier estuary. Advances in Water Resources, 2019, 128, 183-192.	1.7	24
97	A nonlinear relationship between marsh size and sediment trapping capacity compromises salt marshes' stability. Geology, 2020, 48, 966-970.	2.0	24
98	River body extraction from sentinel-2A/B MSI images based on an adaptive multi-scale region growth method. Remote Sensing of Environment, 2021, 255, 112297.	4.6	23
99	Wave-supported sediment gravity flows currents: Effects of fluid-induced pressure gradients and flow width spreading. Continental Shelf Research, 2012, 33, 37-50.	0.9	22
100	Tropical Cyclones Significantly Alleviate Megaâ€Deltaic Erosion Induced by High Riverine Flow. Geophysical Research Letters, 2020, 47, e2020GL089065.	1.5	21
101	Analyses of a large-scale depositional clinoformal wedge along the Italian Adriatic coast. Marine Geology, 2005, 222-223, 179-192.	0.9	20
102	A mass-conservative centered finite volume model for solving two-dimensional two-layer shallow water equations for fluid mud propagation over varying topography and dry areas. Advances in Water Resources, 2012, 40, 54-70.	1.7	20
103	Bottom sediments affect Sonneratia mangrove forests in the prograding Mekong delta, Vietnam. Estuarine, Coastal and Shelf Science, 2016, 177, 60-70.	0.9	19
104	Efficient tidal channel networks alleviate the drought-induced die-off of salt marshes: Implications for coastal restoration and management. Science of the Total Environment, 2020, 749, 141493.	3.9	19
105	Drainage basin reorganization and endorheic-exorheic transition triggered by climate change and human intervention. Global and Planetary Change, 2021, 201, 103494.	1.6	19
106	Climatic oscillations influence the flooding of Venice. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	18
107	An implicit finite difference method for drainage basin evolution. Water Resources Research, 2002, 38, 21-1-21-5.	1.7	16
108	Scaling properties of estuarine beaches. Marine Geology, 2018, 404, 130-136.	0.9	16

#	Article	IF	CITATIONS
109	Consumer control and abiotic stresses constrain coastal saltmarsh restoration. Journal of Environmental Management, 2020, 274, 111110.	3.8	16
110	Salt-Marsh Vegetation and Morphology: Basic Physiology, Modelling and Remote Sensing Observations. Coastal and Estuarine Studies, 2013, , 5-25.	0.4	15
111	Enhanced hysteresis of suspended sediment transport in response to upstream damming: An example of the middle Yangtze River downstream of the Three Gorges Dam. Earth Surface Processes and Landforms, 2020, 45, 1846-1859.	1.2	15
112	Sediment deposition affects mangrove forests in the Mekong delta, Vietnam. Continental Shelf Research, 2021, 213, 104319.	0.9	15
113	Belowground Production and Decomposition Along a Tidal Gradient in a Virginia Salt Marsh. Coastal and Estuarine Studies, 2013, , 47-73.	0.4	14
114	Modeling Tidal Bedding In Distributary-Mouth Bars. Journal of Sedimentary Research, 2014, 84, 499-512.	0.8	14
115	Repeated erosion of cohesive sediments with biofilms. Advances in Geosciences, 0, 39, 9-14.	12.0	14
116	Biogeomorphic modeling to assess the resilience of tidal-marsh restoration to sea level rise and sediment supply. Earth Surface Dynamics, 2022, 10, 531-553.	1.0	14
117	Interactions between river stage and wetland vegetation detected with a Seasonality Index derived from LANDSAT images in the Apalachicola delta, Florida. Advances in Water Resources, 2016, 89, 10-23.	1.7	13
118	Effects of Marsh Edge Erosion in Coupled Barrier Islandâ€Marsh Systems and Geometric Constraints on Marsh Evolution. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1218-1234.	1.0	13
119	Divergence of Sediment Fluxes Triggered by Sea‣evel Rise Will Reshape Coastal Bays. Geophysical Research Letters, 2020, 47, e2020GL087862.	1.5	13
120	Mismatch between watershed effects and local efforts constrains the success of coastal salt marsh vegetation restoration. Journal of Cleaner Production, 2021, 292, 126103.	4.6	13
121	The effect of evaporation on the erodibility of mudflats in a mesotidal estuary. Estuarine, Coastal and Shelf Science, 2017, 194, 118-127.	0.9	12
122	Variations in Persistence and Regenerative Zones in Coastal Forests Triggered by Sea Level Rise and Storms. Remote Sensing, 2019, 11, 2019.	1.8	12
123	Soil creep in a mesotidal salt marsh channel bank: Fast, seasonal, and water table mediated. Geomorphology, 2019, 334, 126-137.	1.1	12
124	Hydro-morphodynamics triggered by extreme riverine floods in a mega fluvial-tidal delta. Science of the Total Environment, 2022, 809, 152076.	3.9	12
125	Fetch and distance from the bay control accretion and erosion patterns in Terrebonne marshes (Louisiana, USA). Earth Surface Processes and Landforms, 2022, 47, 1455-1465.	1.2	11
126	Controls on the degree of fluvial incision of continental shelves. Computers and Geosciences, 2008, 34, 1381-1393.	2.0	10

#	Article	IF	CITATIONS
127	Wave energy asymmetry in shallow bays. Geophysical Research Letters, 2010, 37, .	1.5	10
128	12.13 Ecogeomorphology of Tidal Flats. , 2013, , 201-220.		10
129	Sediment transport in a surface-advected estuarine plume. Continental Shelf Research, 2016, 116, 122-135.	0.9	10
130	Stageâ€discharge relationship in tidal channels. Limnology and Oceanography: Methods, 2017, 15, 394-407.	1.0	10
131	Stability evaluation of tidal flats based on time-series satellite images: A case study of the Jiangsu central coast, China. Estuarine, Coastal and Shelf Science, 2022, 264, 107697.	0.9	10
132	Tidal Networks: form and Function. Coastal and Estuarine Studies, 0, , 75-91.	0.4	9
133	The Role of Waves, Shelf Slope, and Sediment Characteristics on the Development of Erosional Chenier Plains. Geophysical Research Letters, 2018, 45, 8435-8444.	1.5	9
134	Dynamics of Marshâ€Derived Sediments in Lagoonâ€Type Estuaries. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005751.	1.0	9
135	Leveraging the Historical Landsat Catalog for a Remote Sensing Model of Wetland Accretion in Coastal Louisiana. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	9
136	A meeting of the waters: Interdisciplinary challenges and opportunities in tidal rivers. Eos, 2012, 93, 455-456.	0.1	8
137	12.12 Ecogeomorphology of Salt Marshes. , 2013, , 182-200.		8
138	Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates: COMMENT. Geology, 2012, 40, e284-e285.	2.0	7
139	Basic flow field in a tidal basin. Geophysical Research Letters, 2002, 29, 62-1-62-3.	1.5	6
140	On the morphology of radial sand ridges. Earth Surface Processes and Landforms, 2020, 45, 2613-2630.	1.2	6
141	Using rapid repeat SAR interferometry to improve hydrodynamic models of flood propagation in coastal wetlands. Advances in Water Resources, 2022, 159, 104088.	1.7	6
142	Velocity skew controls the flushing of a tracer in a system of shallow bays with multiple inlets. Continental Shelf Research, 2020, 192, 104008.	0.9	5
143	Modeling the Dynamics of Salt Marsh Development in Coastal Land Reclamation. Geophysical Research Letters, 2022, 49, .	1.5	5
144	Reply to 'Marsh vulnerability to sea-level rise'. Nature Climate Change, 2017, 7, 756-757.	8.1	4

#	Article	IF	CITATIONS
145	Salinity increases with water table elevation at the boundary between salt marsh and forest. Journal of Hydrology, 2022, 608, 127576.	2.3	4
146	Storm Surge and Tidal Dissipation in Deltaic Wetlands Bordering a Main Channel. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	4
147	Backâ€barrier flooding by storm surges and overland flow. Earth Surface Processes and Landforms, 2012, 37, 400-410.	1.2	3
148	Introduction: the Coupled Evolution of Geomorphological and Ecosystem Structures in Salt Marshes. Coastal and Estuarine Studies, 2013, , 1-4.	0.4	3
149	Rapid shoreline flooding enhances water turbidity by sediment resuspension: An example in a large Tibetan lake. Earth Surface Processes and Landforms, 2020, 45, 3780-3790.	1.2	3
150	A conceptual model for the long term evolution of tidal flats in the Venice lagoon. , 2007, , 137-144.		3
151	Salt marsh geomorphology: Physical and ecological effects on landform. Eos, 2005, 86, 57.	0.1	2
152	Remote Sensing of Tidal Networks and Their Relation to Vegetation. Coastal and Estuarine Studies, 0, , 27-46.	0.4	2
153	Time-dependent behavior of a placed bed of cohesive sediment subjected to erosion and deposition cycles. Ocean Dynamics, 2015, 65, 287-294.	0.9	2
154	Salt Marsh Ecosystems: Tidal Flow, Vegetation, and Carbon Dynamics. , 2016, , 407-434.		2
155	Biotic and abiotic factors control the geomorphic characteristics of channel networks in salt marshes. Limnology and Oceanography, 0, , .	1.6	2
156	A novel approach to discriminate sedimentary characteristics of deltaic tidal flats with terrestrial laser scanner: Results from a case study. Sedimentology, 2022, 69, 1626-1648.	1.6	2
157	Improving Channel Hydrological Connectivity in Coastal Hydrodynamic Models With Remotely Sensed Channel Networks. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	2
158	Geologic History and the Ergodic Principle: Foundations for Long-Term Ecological Research in Salt Marshes. Coastal and Estuarine Studies, 0, , 189-201.	0.4	1
159	Dataset of numerical modelling results of wave thrust on salt marsh boundaries with different seagrass coverages in a shallow back-barrier estuary. Data in Brief, 2019, 25, 104197.	0.5	1
160	Understanding Marsh Dynamics. , 2021, , 278-299.		1
161	Bedrock erosion in subglacial channels. PLoS ONE, 2021, 16, e0253768.	1.1	1
162	Modelling Tidal Environments. , 2021, , .		0

#	Article	lF	CITATIONS
163	Ecogeomorphology of Salt Marshes. , 2021, , .		0
164	Vegetation and cloud cover shape semiâ€arid carbonate landform development. Earth Surface Processes and Landforms, 2021, 46, 1257-1267.	1.2	0
165	On the cross-sectional evolution of tidal channels. , 2006, , .		0