Changzheng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4334150/publications.pdf

Version: 2024-02-01

27 papers

1,209 citations

16 h-index 25 g-index

28 all docs 28 docs citations

times ranked

28

1653 citing authors

#	Article	IF	CITATIONS
1	lonomics, transcriptomics and untargeted metabolomics analyses provide new insights into the Cd response and accumulation mechanisms of mulberry. Environmental and Experimental Botany, 2022, 196, 104821.	4.2	8
2	AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell, 2022, 34, 2688-2707.	6.6	46
3	ZmSKS13, a cupredoxin domainâ€containing protein, is required for maize kernel development via modulation of redox homeostasis. New Phytologist, 2021, 229, 2163-2178.	7.3	20
4	The microRNA476aâ€∢i>RFL module regulates adventitious root formation through a mitochondriaâ€dependent pathway in <i>Populus</i> . New Phytologist, 2021, 230, 2011-2028.	7. 3	14
5	Cytokinin signaling localized in phloem noncellâ€autonomously regulates cambial activity during secondary growth of <i>Populus</i> stems. New Phytologist, 2021, 230, 1476-1488.	7.3	19
6	Dual Reproductive Cell-Specific Promoter-Mediated Split-Cre/LoxP System Suitable for Exogenous Gene Deletion in Hybrid Progeny of Transgenic Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 5080.	4.1	2
7	Heterologous Expression of Poplar WRKY18/35 Paralogs in Arabidopsis Reveals Their Antagonistic Regulation on Pathogen Resistance and Abiotic Stress Tolerance via Variable Hormonal Pathways. International Journal of Molecular Sciences, 2020, 21, 5440.	4.1	9
8	SH1-dependent maize seed development and starch synthesis via modulating carbohydrate flow and osmotic potential balance. BMC Plant Biology, 2020, 20, 264.	3.6	9
9	Expression of <i>Ralstonia solanacearum</i> type III secretion system is dependent on a novel type 4 pili (T4P) assembly protein (TapV) but is T4P independent. Molecular Plant Pathology, 2020, 21, 777-793.	4.2	11
10	Functional Characterization of RsRsgA for Ribosome Biosynthesis and Expression of the Type III Secretion System inRalstonia solanacearum. Molecular Plant-Microbe Interactions, 2020, 33, 972-981.	2.6	0
11	Auxinâ€mediated Aux/ <scp>IAA</scp> â€ <scp>ARF</scp> â€ <scp>HB</scp> signaling cascade regulates secondary xylem development in <i>Populus</i> . New Phytologist, 2019, 222, 752-767.	7.3	85
12	Genome-wide investigation of pentatricopeptide repeat gene family in poplar and their expression analysis in response to biotic and abiotic stresses. Scientific Reports, 2018, 8, 2817.	3.3	115
13	The <i>MicroRNA390</i> / <i>TRANS-ACTING SHORT INTERFERING RNA3</i> Module Mediates Lateral Root Growth under Salt Stress via the Auxin Pathway. Plant Physiology, 2018, 177, 775-791.	4.8	98
14	PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiology, 2017, 37, 1713-1726.	3.1	99
15	Isolation and Functional Validation of Salinity and Osmotic Stress Inducible Promoter from the Maize Type-II H+-Pyrophosphatase Gene by Deletion Analysis in Transgenic Tobacco Plants. PLoS ONE, 2016, 11, e0154041.	2.5	41
16	Identification of a 467 bp Promoter of Maize Phosphatidylinositol Synthase Gene (ZmPIS) Which Confers High-Level Gene Expression and Salinity or Osmotic Stress Inducibility in Transgenic Tobacco. Frontiers in Plant Science, 2016, 7, 42.	3.6	19
17	LOB Domain Proteins: Beyond Lateral Organ Boundaries. Trends in Plant Science, 2016, 21, 159-167.	8.8	124
18	Cooperative action of the paralogous maize lateral organ boundaries (LOB) domain proteins RTCS and RTCL in shootâ€borne root formation. New Phytologist, 2015, 207, 1123-1133.	7.3	75

#	Article	lF	CITATIONS
19	Diversity of Stability, Localization, Interaction and Control of Downstream Gene Activity in the Maize Aux/IAA Protein Family. PLoS ONE, 2014, 9, e107346.	2.5	14
20	Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.). Plant Physiology and Biochemistry, 2014, 83, 232-242.	5.8	16
21	Molecular interactions of ROOTLESS CONCERNING CROWN AND SEMINAL ROOTS, a LOB domain protein regulating shoot-borne root initiation in maize (<i>>Zea mays</i> L). Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1542-1551.	4.0	54
22	Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone. BMC Plant Biology, 2012, 12, 89.	3.6	71
23	Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stage after long-term adjustment to rice black-streaked dwarf virus infection. Gene, 2011, 485, 106-113.	2.2	39
24	Comparative proteome analyses of phosphorus responses in maize (<i>Zea mays</i> L.) roots of wildâ€type and a lowâ€Pâ€tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant Journal, 2008, 55, 927-939.	5.7	81
25	Kernel amino acid composition and protein content of introgression lines from Zea mays ssp. mexicana into cultivated maize. Journal of Cereal Science, 2008, 48, 387-393.	3.7	36
26	Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
27	PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis. Tree Physiology, 0, , .	3.1	9