## Changzheng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4334150/publications.pdf Version: 2024-02-01



CHANCZHENC XII

| #  | Article                                                                                                                                                                                                                                                          | IF       | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|
| 1  | LOB Domain Proteins: Beyond Lateral Organ Boundaries. Trends in Plant Science, 2016, 21, 159-167.                                                                                                                                                                | 8.8      | 124           |
| 2  | Genome-wide investigation of pentatricopeptide repeat gene family in poplar and their expression analysis in response to biotic and abiotic stresses. Scientific Reports, 2018, 8, 2817.                                                                         | 3.3      | 115           |
| 3  | PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiology, 2017, 37, 1713-1726.                                                                                  | 3.1      | 99            |
| 4  | The <i>MicroRNA390</i> / <i>TRANS-ACTING SHORT INTERFERING RNA3</i> Module Mediates Lateral Root<br>Growth under Salt Stress via the Auxin Pathway. Plant Physiology, 2018, 177, 775-791.                                                                        | 4.8      | 98            |
| 5  | Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea) Tj ETQq1 I                                                                                                                                                      | 0.784314 | rgBT_/Overloc |
| 6  | Auxinâ€mediated Aux/ <scp>IAA</scp> â€ <scp>ARF</scp> â€ <scp>HB</scp> signaling cascade regulates<br>secondary xylem development in <i>Populus</i> . New Phytologist, 2019, 222, 752-767.                                                                       | 7.3      | 85            |
| 7  | Comparative proteome analyses of phosphorus responses in maize ( <i>Zea mays</i> L.) roots of<br>wildâ€type and a lowâ€Pâ€tolerant mutant reveal root characteristics associated with phosphorus<br>efficiency. Plant Journal, 2008, 55, 927-939.                | 5.7      | 81            |
| 8  | Cooperative action of the paralogous maize lateral organ boundaries (LOB) domain proteins RTCS and RTCL in shootâ€borne root formation. New Phytologist, 2015, 207, 1123-1133.                                                                                   | 7.3      | 75            |
| 9  | Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone. BMC Plant Biology, 2012, 12, 89.                                                                                                   | 3.6      | 71            |
| 10 | Molecular interactions of ROOTLESS CONCERNING CROWN AND SEMINAL ROOTS, a LOB domain protein regulating shoot-borne root initiation in maize ( <i>Zea mays</i> L.). Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1542-1551. | 4.0      | 54            |
| 11 | AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell, 2022, 34, 2688-2707.                                                                   | 6.6      | 46            |
| 12 | Isolation and Functional Validation of Salinity and Osmotic Stress Inducible Promoter from the Maize<br>Type-II H+-Pyrophosphatase Gene by Deletion Analysis in Transgenic Tobacco Plants. PLoS ONE, 2016, 11,<br>e0154041.                                      | 2.5      | 41            |
| 13 | Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stage after long-term adjustment<br>to rice black-streaked dwarf virus infection. Gene, 2011, 485, 106-113.                                                                                 | 2.2      | 39            |
| 14 | Kernel amino acid composition and protein content of introgression lines from Zea mays ssp.<br>mexicana into cultivated maize. Journal of Cereal Science, 2008, 48, 387-393.                                                                                     | 3.7      | 36            |
| 15 | ZmSKS13, a cupredoxin domainâ€containing protein, is required for maize kernel development via modulation of redox homeostasis. New Phytologist, 2021, 229, 2163-2178.                                                                                           | 7.3      | 20            |
| 16 | Identification of a 467 bp Promoter of Maize Phosphatidylinositol Synthase Gene (ZmPIS) Which<br>Confers High-Level Gene Expression and Salinity or Osmotic Stress Inducibility in Transgenic Tobacco.<br>Frontiers in Plant Science, 2016, 7, 42.               | 3.6      | 19            |
| 17 | Cytokinin signaling localized in phloem noncellâ€autonomously regulates cambial activity during secondary growth of <i>Populus</i> stems. New Phytologist, 2021, 230, 1476-1488.                                                                                 | 7.3      | 19            |
| 18 | Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.). Plant Physiology and Biochemistry, 2014, 83, 232-242.                                                      | 5.8      | 16            |

CHANGZHENG XU

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Diversity of Stability, Localization, Interaction and Control of Downstream Gene Activity in the Maize<br>Aux/IAA Protein Family. PLoS ONE, 2014, 9, e107346.                                                                                                    | 2.5 | 14        |
| 20 | The microRNA476aâ€ <i>RFL</i> module regulates adventitious root formation through a mitochondriaâ€dependent pathway in <i>Populus</i> . New Phytologist, 2021, 230, 2011-2028.                                                                                  | 7.3 | 14        |
| 21 | Expression of <i>Ralstonia solanacearum</i> type III secretion system is dependent on a novel type 4<br>pili (T4P) assembly protein (TapV) but is T4P independent. Molecular Plant Pathology, 2020, 21, 777-793.                                                 | 4.2 | 11        |
| 22 | Heterologous Expression of Poplar WRKY18/35 Paralogs in Arabidopsis Reveals Their Antagonistic<br>Regulation on Pathogen Resistance and Abiotic Stress Tolerance via Variable Hormonal Pathways.<br>International Journal of Molecular Sciences, 2020, 21, 5440. | 4.1 | 9         |
| 23 | SH1-dependent maize seed development and starch synthesis via modulating carbohydrate flow and osmotic potential balance. BMC Plant Biology, 2020, 20, 264.                                                                                                      | 3.6 | 9         |
| 24 | PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis. Tree Physiology, 0, , .                                                                                                                      | 3.1 | 9         |
| 25 | lonomics, transcriptomics and untargeted metabolomics analyses provide new insights into the Cd<br>response and accumulation mechanisms of mulberry. Environmental and Experimental Botany, 2022,<br>196, 104821.                                                | 4.2 | 8         |
| 26 | Dual Reproductive Cell-Specific Promoter-Mediated Split-Cre/LoxP System Suitable for Exogenous Gene<br>Deletion in Hybrid Progeny of Transgenic Arabidopsis. International Journal of Molecular Sciences,<br>2021, 22, 5080.                                     | 4.1 | 2         |
| 27 | Functional Characterization of RsRsgA for Ribosome Biosynthesis and Expression of the Type III<br>Secretion System inRalstonia solanacearum. Molecular Plant-Microbe Interactions, 2020, 33, 972-981.                                                            | 2.6 | 0         |