Jean-Jacques Greffet

List of Publications by Citations

Source: https://exaly.com/author-pdf/4334072/jean-jacques-greffet-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14,148 58 114 224 h-index g-index citations papers 262 15,987 6.44 5.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
224	Resonant optical antennas. <i>Science</i> , 2005 , 308, 1607-9	33.3	1712
223	Coherent emission of light by thermal sources. <i>Nature</i> , 2002 , 416, 61-4	50.4	915
222	Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. <i>Surface Science Reports</i> , 2005 , 57, 59-112	12.9	613
221	Radiative heat transfer at the nanoscale. <i>Nature Photonics</i> , 2009 , 3, 514-517	33.9	463
220	Thermal radiation scanning tunnelling microscopy. <i>Nature</i> , 2006 , 444, 740-3	50.4	360
219	Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle. <i>Optics Communications</i> , 2006 , 261, 368-375	2	307
218	Image formation in near-field optics. <i>Progress in Surface Science</i> , 1997 , 56, 133-237	6.6	280
217	Near-field thermophotovoltaic energy conversion. <i>Journal of Applied Physics</i> , 2006 , 100, 063704	2.5	276
216	Definition and measurement of the local density of electromagnetic states close to an interface. <i>Physical Review B</i> , 2003 , 68,	3.3	262
215	ENHANCED RADIATIVE HEAT TRANSFER AT NANOMETRIC DISTANCES. <i>Microscale Thermophysical Engineering</i> , 2002 , 6, 209-222		253
214	Near-field spectral effects due to electromagnetic surface excitations. <i>Physical Review Letters</i> , 2000 , 85, 1548-51	7.4	249
213	Near-Field Effects in Spatial Coherence of Thermal Sources. <i>Physical Review Letters</i> , 1999 , 82, 1660-166	37.4	238
212	Nanoscale radiative heat transfer between a small particle and a plane surface. <i>Applied Physics Letters</i> , 2001 , 78, 2931-2933	3.4	187
211	Single-molecule spontaneous emission close to absorbing nanostructures. <i>Applied Physics Letters</i> , 2004 , 85, 3863-3865	3.4	181
210	Optical patch antennas for single photon emission using surface plasmon resonances. <i>Physical Review Letters</i> , 2010 , 104, 026802	7.4	179
209	Controlling spontaneous emission with plasmonic optical patch antennas. <i>Nano Letters</i> , 2013 , 13, 1516-	· 2 111.5	177
208	Heat transfer between two nanoparticles through near field interaction. <i>Physical Review Letters</i> , 2005 , 94, 085901	7.4	176

(2010-2013)

207	Confined Tamm plasmon lasers. <i>Nano Letters</i> , 2013 , 13, 3179-84	11.5	163
206	Applied physics. Nanoantennas for light emission. <i>Science</i> , 2005 , 308, 1561-3	33.3	160
205	Berreman mode and epsilon near zero mode. Optics Express, 2012, 20, 23971-7	3.3	157
204	Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton. <i>Physical Review B</i> , 1997 , 55, 10105-10114	3.3	151
203	Nanoscale heat flux between nanoporous materials. <i>Optics Express</i> , 2011 , 19 Suppl 5, A1088-103	3.3	145
202	Non-blinking quantum dot with a plasmonic nanoshell resonator. <i>Nature Nanotechnology</i> , 2015 , 10, 170)-5 8.7	142
201	Field theory for generalized bidirectional reflectivity: derivation of Helmholtz reciprocity principle and Kirchhoff law. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1998 , 15, 2735	1.8	140
200	Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. <i>Nano Letters</i> , 2013 , 13, 5391-6	11.5	139
199	Mesoscopic description of radiative heat transfer at the nanoscale. <i>Physical Review Letters</i> , 2010 , 105, 234301	7.4	136
198	Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces. <i>Physical Review B</i> , 2008 , 77,	3.3	134
197	Coherent spontaneous emission of light by thermal sources. <i>Physical Review B</i> , 2004 , 69,	3.3	121
196	Quantum thermal bath for molecular dynamics simulation. <i>Physical Review Letters</i> , 2009 , 103, 190601	7.4	116
195	Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission. <i>Physical Review Applied</i> , 2015 , 4,	4.3	114
194	Surface plasmon Fourier optics. <i>Physical Review B</i> , 2009 , 79,	3.3	111
193	Highly directional radiation generated by a tungsten thermal source. <i>Optics Letters</i> , 2005 , 30, 2623-5	3	110
192	Epsilon-near-zero mode for active optoelectronic devices. <i>Physical Review Letters</i> , 2012 , 109, 237401	7.4	109
191	Impedance of a nanoantenna and a single quantum emitter. <i>Physical Review Letters</i> , 2010 , 105, 117701	7.4	105
190	Quantum theory of spontaneous and stimulated emission of surface plasmons. <i>Physical Review B</i> , 2010 , 82,	3.3	101

189	Blackbody spectrum revisited in the near field. <i>Physical Review Letters</i> , 2013 , 110, 146103	7.4	94
188	Spatial coherence of thermal near fields. <i>Optics Communications</i> , 2000 , 186, 57-67	2	94
187	Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals. <i>ACS Nano</i> , 2013 , 7, 10912-9	16.7	90
186	Radiation forces on small particles in thermal near fields. <i>Journal of Optics</i> , 2002 , 4, S109-S114		88
185	Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function. <i>Optics Communications</i> , 1995 , 116, 316-321	2	83
184	Resonant transmission through a metallic film due to coupled modes. <i>Optics Express</i> , 2005 , 13, 70-6	3.3	82
183	Coherent Scattering of Near-Resonant Light by a Dense Microscopic Cold Atomic Cloud. <i>Physical Review Letters</i> , 2016 , 116, 233601	7.4	80
182	Coherent thermal antenna using a photonic crystal slab. <i>Physical Review Letters</i> , 2006 , 96, 123903	7.4	80
181	Reciprocity of evanescent electromagnetic waves. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1998 , 15, 706	1.8	78
180	Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1995 , 12, 2716	1.8	77
179	Fast nanoscale heat-flux modulation with phase-change materials. <i>Physical Review B</i> , 2011 , 83,	3.3	75
178	Enhanced radiative heat transfer between nanostructured gold plates. <i>Physical Review B</i> , 2012 , 85,	3.3	73
177	Radiative heat transfer between metallic nanoparticles. <i>Applied Physics Letters</i> , 2008 , 92, 201906	3.4	70
176	Influence of microroughness on emissivity. <i>Journal of Applied Physics</i> , 2004 , 96, 2656-2664	2.5	70
175	Roadmap on optical energy conversion. Journal of Optics (United Kingdom), 2016, 18, 073004	1.7	69
174	Radiative heat transfer between two dielectric nanogratings in the scattering approach. <i>Physical Review B</i> , 2012 , 86,	3.3	68
173	Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components. <i>Physical Review A</i> , 2000 , 62,	2.6	68
172	Engineering infrared emission properties of silicon in the near field and the far field. <i>Optics Communications</i> , 2004 , 237, 379-388	2	67

(2004-2017)

171	Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators. <i>ACS Photonics</i> , 2017 , 4, 2091-2101	6.3	66	
170	Scattering of a surface plasmon polariton by a surface defect. <i>Physical Review B</i> , 1994 , 50, 15261-15275	3.3	61	
169	Surface profile reconstruction using near-field data. <i>Optics Communications</i> , 1995 , 116, 20-24	2	60	
168	Near field scattered by a dielectric rod below a metallic surface. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1994 , 11, 1117	1.8	59	
167	Coherent thermal infrared emission by two-dimensional silicon carbide gratings. <i>Physical Review B</i> , 2012 , 86,	3.3	58	
166	Friction forces arising from fluctuating thermal fields. <i>Physical Review A</i> , 2004 , 69,	2.6	58	
165	Scattering of electromagnetic waves by rough dielectric surfaces. <i>Physical Review B</i> , 1988 , 37, 6436-644	13.3	56	
164	Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy. <i>Journal of Applied Physics</i> , 2000 , 88, 4845	2.5	55	
163	Theory of electrostatic probe microscopy: A simple perturbative approach. <i>Applied Physics Letters</i> , 2000 , 76, 2955-2957	3.4	55	
162	Optical content and resolution of near-field optical images: Influence of the operating mode. <i>Journal of Applied Physics</i> , 1997 , 82, 501-509	2.5	53	
161	The diffusion of partially coherent beams in turbulent media. Optics Communications, 2002, 208, 1-8	2	53	
160	Influence of metallic nanoparticles on upconversion processes. <i>Journal of Applied Physics</i> , 2009 , 105, 033107	2.5	52	
159	Time-dependent transport through scattering media: from radiative transfer to diffusion. <i>Journal of Optics</i> , 2002 , 4, S103-S108		52	
158	Nanoantenna for Electrical Generation of Surface Plasmon Polaritons. <i>Physical Review Letters</i> , 2016 , 116, 106803	7.4	51	
157	Huygens-Fresnel principle for surface plasmons. <i>Optics Express</i> , 2009 , 17, 17483-90	3.3	51	
156	Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution. <i>Physical Review B</i> , 2008 , 77,	3.3	51	
155	Influence of tip modulation on image formation in scanning near-field optical microscopy. <i>Journal of Applied Physics</i> , 2001 , 89, 5159-5169	2.5	51	
154	Coupled surface polaritons and the Casimir force. <i>Physical Review A</i> , 2004 , 69,	2.6	50	

153	Tip-shape effects on electrostatic force microscopy resolution. <i>Nanotechnology</i> , 2001 , 12, 496-499	3.4	50
152	Anti-coalescence of bosons on a lossy beam splitter. <i>Science</i> , 2017 , 356, 1373-1376	33.3	46
151	Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons. <i>Physical Review B</i> , 2013 , 87,	3.3	46
150	Diffusive-to-ballistic transition in dynamic light transmission through thin scattering slabs: a radiative transfer approach. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision,</i> 2004 , 21, 1430-7	1.8	46
149	Experimental evidence of nanometer-scale confinement of plasmonic eigenmodes responsible for hot spots in random metallic films. <i>Physical Review B</i> , 2013 , 88,	3.3	44
148	Polarization-Controlled Confined Tamm Plasmon Lasers. ACS Photonics, 2015, 2, 842-848	6.3	44
147	Degree of polarization of thermal light emitted by gratings supporting surface waves. <i>Optics Express</i> , 2008 , 16, 5305-13	3.3	43
146	Fast microfluidic temperature control for high resolution live cell imaging. <i>Lab on A Chip</i> , 2011 , 11, 484-	97.2	42
145	Heat transfer between a nano-tip and a surface. <i>Nanotechnology</i> , 2006 , 17, 2978-2981	3.4	42
144	Theoretical model of the shift of the Brewster angle on a rough surface. <i>Optics Letters</i> , 1992 , 17, 238-4	03	41
143	Near-field optical spectroscopy using an incoherent light source. <i>Applied Physics Letters</i> , 2000 , 76, 397-	3994	40
142	Brewster "mode" in highly doped semiconductor layers: an all-optical technique to monitor doping concentration. <i>Optics Express</i> , 2014 , 22, 24294-303	3.3	38
141	Scattering of s-polarized electromagnetic waves by a 2d obstacle near an interface. <i>Optics Communications</i> , 1989 , 72, 274-278	2	38
140	Design of highly efficient metallo-dielectric patch antennas for single-photon emission. <i>Optics Express</i> , 2014 , 22, 2337-47	3.3	36
139	Electrical modulation of emissivity. <i>Applied Physics Letters</i> , 2013 , 102, 081125	3.4	36
138	Photon diffusion coefficient in scattering and absorbing media. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2006 , 23, 1106-10	1.8	36
137	Ultrathin Cu(In,Ga)Se2 based solar cells. <i>Thin Solid Films</i> , 2017 , 633, 55-60	2.2	35
136	Optical approaches to improve the photocurrent generation in Cu(In,Ga)Se2 solar cells with absorber thicknesses down to 0.5 lb. <i>Journal of Applied Physics</i> , 2012 , 112, 094902	2.5	35

(2007-2012)

135	Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy. <i>Physical Review B</i> , 2012 , 85,	3.3	34	
134	Propagation and localization of a surface plasmon polariton on a finite grating. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1996 , 13, 1499	1.7	34	
133	Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law. <i>Physical Review X</i> , 2018 , 8,	9.1	33	
132	Polaritonic modes in a dense cloud of cold atoms. <i>Physical Review A</i> , 2016 , 93,	2.6	32	
131	Hyperbolic metamaterials and surface plasmon polaritons. <i>Optica</i> , 2017 , 4, 1409	8.6	32	
130	Noncontact surface temperature measurement by means of a modulated photothermal effect. <i>Applied Optics</i> , 1990 , 29, 979-87	1.7	31	
129	On the equivalence between the illumination and collection modes of the scanning near-field optical microscope. <i>Optics Communications</i> , 1997 , 142, 7-13	2	30	
128	Anisotropic Polarized Emission of a Doped Silicon Lamellar Grating. <i>Journal of Heat Transfer</i> , 2007 , 129, 11-16	1.8	29	
127	Tailoring silicon radiative properties. <i>Optics Communications</i> , 2005 , 250, 316-320	2	29	
126	Single-plasmon interferences. <i>Science Advances</i> , 2016 , 2, e1501574	14.3	29	
125	Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes. <i>ACS Photonics</i> , 2016 , 3, 1776-1781	6.3	28	
124	Influence of roughness on near-field heat transfer between two plates. <i>Physical Review B</i> , 2010 , 82,	3.3	28	
123	Near-field heat transfer between a nanoparticle and a rough surface. <i>Physical Review B</i> , 2010 , 81,	3.3	28	
122	Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light. <i>Physical Review Letters</i> , 2004 , 92, 213903	7.4	28	
121	Polarization effects in the optical interaction between a nanoparticle and a corrugated surface: implications for apertureless near-field microscopy. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1998 , 15, 109	1.8	28	
120	Mean-field theory of light scattering by one-dimensional rough surfaces. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1998 , 15, 528	1.8	27	
119	Nonspecular astigmatic reflection of a 3D gaussian beam on an interface. <i>Optics Communications</i> , 1992 , 93, 271-276	2	27	
118	Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision,</i> 2007 , 24, 2953-62	1.8	26	

117	CMOS compatible metal-insulator-metal plasmonic perfect absorbers. <i>Optical Materials Express</i> , 2016 , 6, 2389	2.6	26
116	Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon. <i>Applied Physics Letters</i> , 2009 , 95, 231913	3.4	25
115	Light scattering by a two-dimensional, rough penetrable medium: A mean-field theory. <i>Radio Science</i> , 1999 , 34, 311-335	1.4	25
114	Diffraction of electromagnetic waves by crossed gratings: a series solution. <i>Optics Letters</i> , 1992 , 17, 17	749-2	25
113	Effect of vortices on the spin-flip lifetime of atoms in superconducting atom-chips. <i>Europhysics Letters</i> , 2009 , 87, 13002	1.6	24
112	Superlens in the time domain. <i>Physical Review Letters</i> , 2012 , 109, 097405	7.4	24
111	Study of the features of PSTM images by means of a perturbative approach. <i>Ultramicroscopy</i> , 1995 , 57, 246-250	3.1	24
110	Enhancing thermal radiation with nanoantennas to create infrared sources with high modulation rates. <i>Optica</i> , 2018 , 5, 175	8.6	23
109	Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2001 , 18, 374-84	1.8	23
108	Analysis of image formation with a photon scanning tunneling microscope. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1996 , 13, 35	1.8	23
107	Coherent reflection factor of a random rough surface: applications. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1993 , 10, 2637	1.8	23
106	Antenna surface plasmon emission by inelastic tunneling. <i>Nature Communications</i> , 2019 , 10, 4949	17.4	22
105	Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells. <i>Applied Physics Letters</i> , 2010 , 97, 221111	3.4	22
104	Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy. <i>Journal of Applied Physics</i> , 1999 , 86, 648-656	2.5	22
103	Scattering by deep inhomogeneous gratings. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1992 , 9, 996	1.8	22
102	Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010 , 111, 1005-1014	2.1	21
101	Definition of the diffusion coefficient in scattering and absorbing media. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2003 , 20, 678-85	1.8	21
100	Direct reconstruction of surfaces from near-field intensity under spatially incoherent illumination. <i>Optics Letters</i> , 1996 , 21, 501-3	3	21

99	High efficiency quasi-monochromatic infrared emitter. Applied Physics Letters, 2014, 104, 081101	3.4	20	
98	Midinfrared Ultrastrong LightMatter Coupling for THz Thermal Emission. ACS Photonics, 2017, 4, 2550-7	2\$655	20	
97	Tailoring GaAs terahertz radiative properties with surface phonons polaritons. <i>Applied Physics Letters</i> , 2010 , 97, 161101	3.4	20	•
96	Light scattering by a random distribution of particles embedded in absorbing media: diagrammatic expansion of the extinction coefficient. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2007 , 24, 2943-52	1.8	20	
95	Influence of spatial coherence on scattering by a particle. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2003 , 20, 2315-20	1.8	20	
94	Application of the pulsed photothermal effect to fast surface temperature measurements. <i>Applied Optics</i> , 1992 , 31, 5350-8	1.7	20	
93	Asymptotic expressions describing radiative heat transfer between polar materials from the far-field regime to the nanoscale regime. <i>Journal of Applied Physics</i> , 2012 , 111, 014311	2.5	19	
92	Reconstruction of the dielectric contrast profile from near-field data. <i>Ultramicroscopy</i> , 1995 , 61, 11-16	3.1	19	
91	Mo/Cu(In, Ga)Se2 back interface chemical and optical properties for ultrathin CIGSe solar cells. <i>Applied Surface Science</i> , 2012 , 258, 3058-3061	6.7	18	
90	Enhanced absorption by nanostructured silicon. <i>Applied Physics Letters</i> , 2008 , 93, 193103	3.4	18	
89	Coherent thermal radiation. <i>Contemporary Physics</i> , 2007 , 48, 183-194	3.3	18	
88	Radiative properties of scattering and absorbing dense media: theory and experimental study. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003 , 77, 193-210	2.1	18	
87	Theoretical and experimental investigation of the extinction in a dense distribution of particles: nonlocal effects. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2001 , 18, 3072-6	1.8	18	
86	Relationship between the near-field speckle pattern and the statistical properties of a surface. <i>Ultramicroscopy</i> , 1995 , 61, 43-50	3.1	17	
85	Design of surface microrelief with selective radiative properties. <i>International Journal of Heat and Mass Transfer</i> , 1994 , 37, 553-558	4.9	17	
84	Backscattering of s-polarized light from a cloud of small particles above a dielectric substrate. Waves in Random and Complex Media, 1991 , 1, S65-S73		17	
83	Nonspecular reflection from a lossy dielectric. <i>Optics Letters</i> , 1993 , 18, 1129	3	17	
82	Surface Plasmon Polaritons Emission with Nanopatch Antennas: Enhancement by Means of Mode Hybridization. <i>ACS Photonics</i> , 2019 , 6, 2788-2796	6.3	16	

81	Optical Transmission of an Atomic Vapor in the Mesoscopic Regime. <i>Physical Review Letters</i> , 2019 , 122, 113401	7.4	16
80	A hybrid plasmonic semiconductor laser. <i>Applied Physics Letters</i> , 2013 , 102, 101106	3.4	16
79	Size-dependent infrared properties of MgO nanoparticles with evidence of screening effect. <i>Applied Physics Letters</i> , 2012 , 100, 241904	3.4	16
78	Radiative heat transfer from a black body to dielectric nanoparticles. <i>Physical Review B</i> , 2011 , 84,	3.3	16
77	Theory of near-field magneto-optical imaging. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2002 , 19, 572-83	1.8	16
76	Resonant infrared transmission through SiC films. <i>Optics Letters</i> , 2004 , 29, 2178-80	3	15
75	Equivalence of constant-height and constant-intensity images in scanning near-field optical microscopy. <i>Optics Letters</i> , 1996 , 21, 1208-10	3	15
74	Comparison between theoretical and experimental scattering of an s-polarized electromagnetic wave by a two-dimensional obstacle on a surface. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1991 , 8, 1261	1.8	15
73	Dammak et al. Reply:. <i>Physical Review Letters</i> , 2011 , 107,	7.4	14
72	Scattering of electromagnetic waves by a grating: a numerical evaluation of the iterative-series solution. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1990 , 7, 1483	1.8	14
71	Light Trapping in Ultrathin CIGS Solar Cell With Absorber Thickness of 0.1 \$mu\$m. <i>IEEE Journal of Photovoltaics</i> , 2018 , 8, 621-625	3.7	13
70	Graphene optical-to-thermal converter. <i>Applied Physics Letters</i> , 2014 , 105, 211102	3.4	13
69	Hot Carrier Solar Cells: Controlling Thermalization in Ultrathin Devices. <i>IEEE Journal of Photovoltaics</i> , 2012 , 2, 506-511	3.7	13
68	Spatial coherence in strongly scattering media. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2005 , 22, 2329-37	1.8	13
67	Scattering by randomly rough dielectric surfaces and rough dielectric films: influence of the height distribution. <i>Journal of Optics</i> , 1999 , 1, 560-565		13
66	Structure of the electromagnetic field in a slab of photonic crystal. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1997 , 14, 339	1.7	12
65	Improving selective thermal emission properties of three-dimensional macroporous silicon through porosity tuning. <i>Applied Physics Letters</i> , 2008 , 93, 081913	3.4	12
64	Temperature dependence of quantum dot fluorescence assisted by plasmonic nanoantennas. <i>Physical Review B</i> , 2015 , 91,	3.3	11

63	Using radiative transfer equation to model absorption by thin Cu(In,Ga)Se2 solar cells with Lambertian back reflector. <i>Optics Express</i> , 2013 , 21, 2563-80	3.3	11
62	Propagation of light through small clouds of cold interacting atoms. <i>Physical Review A</i> , 2016 , 94,	2.6	10
61	Remote preparation of single-plasmon states. <i>Physical Review B</i> , 2017 , 96,	3.3	10
60	Scattering of a diffusive wave by a subsurface object. <i>Journal of Applied Physics</i> , 2000 , 87, 7638-7646	2.5	10
59	Near-Resonant Light Scattering by a Subwavelength Ensemble of Identical Atoms. <i>Physical Review Letters</i> , 2020 , 124, 073403	7.4	9
58	Statistical properties of spontaneous emission from atoms near a rough surface. <i>Physical Review A</i> , 2011 , 84,	2.6	9
57	Enhanced scattering and absorption due to the presence of a particle close to an interface. <i>Optics Express</i> , 2012 , 20 Suppl 4, A530-44	3.3	9
56	Light Emission by a Thermalized Ensemble of Emitters Coupled to a Resonant Structure. <i>Advanced Optical Materials</i> , 2019 , 7, 1801697	8.1	8
55	Giant field enhancement in electromagnetic Helmholtz nanoantenna. <i>Physical Review B</i> , 2014 , 90,	3.3	8
54	Homogenization of an ensemble of interacting resonant scatterers. <i>Physical Review A</i> , 2017 , 96,	2.6	8
53	Scattering by 2D particles deposited on a dielectric planar waveguide: a near-field and far-field study. <i>Waves in Random and Complex Media</i> , 1995 , 5, 145-155		8
52	An incandescent metasurface for quasimonochromatic polarized mid-wave infrared emission modulated beyond 10 MHz. <i>Nature Communications</i> , 2021 , 12, 1492	17.4	8
51	Revisiting thermal radiation in the near field. Comptes Rendus Physique, 2017, 18, 24-30	1.4	7
50	Strong Coupling of Nanoplatelets and Surface Plasmons on a Gold Surface. ACS Photonics, 2019, 6, 264	3 <i>-</i> 2, 6 48	7
49	Microlitre hot strip devices for thermal characterization of nanofluids. <i>Microelectronic Engineering</i> , 2007 , 84, 1194-1197	2.5	7
48	Thermo-resistance based micro-calorimeter for continuous chemical enthalpy measurements. <i>Microelectronic Engineering</i> , 2008 , 85, 1367-1369	2.5	7
47	Comment on Radiative transfer over small distances from a heated metal. Optics Letters, 2001, 26, 480-	-13	7
46	Analysis of image formation with a photon scanning tunneling microscope. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1996 , 13, 1	1.8	7

45	Plasmonic interferences of two-particle N00N states. New Journal of Physics, 2018, 20, 053050	2.9	6
44	Revisiting the Role of Metallic Antennas to Control Light Emission by Lead Salt Nanocrystal Assemblies. <i>Physical Review Applied</i> , 2018 , 10,	4.3	6
43	Enhanced radiative heat transfer between nanostructured gold plates. <i>Journal of Physics:</i> Conference Series, 2012 , 395, 012154	0.3	5
42	Influence of a depletion layer on localized surface waves in doped semiconductor nanostructures. <i>Applied Physics Letters</i> , 2012 , 100, 091103	3.4	5
41	Contrast mechanisms in illumination-mode SNOM. <i>Ultramicroscopy</i> , 1998 , 71, 39-48	3.1	5
40	Resonant optical transmission through a photonic crystal in the forbidden gap. <i>Physical Review B</i> , 2005 , 71,	3.3	5
39	Light scattering from cold rolled aluminum surfaces. Optics Communications, 2001, 187, 289-294	2	5
38	Quasi-confined ENZ mode in an anisotropic uniaxial thin slab. <i>Optics Express</i> , 2019 , 27, 12317-12335	3.3	5
37	Revealing the spectral response of a plasmonic lens using low-energy electrons. <i>Physical Review B</i> , 2017 , 96,	3.3	4
36	Integral Equation Modeling of Doubly Periodic Structures With an Efficient PMCHWT Formulation. <i>IEEE Transactions on Antennas and Propagation</i> , 2012 , 60, 292-300	4.9	4
35	Polarization conversion with a photonic crystal slab. <i>Journal of the European Optical Society-Rapid Publications</i> , 2008 , 3,	2.5	4
34	Coherent Spontaneous Emission of Light Due to Surface Waves 2003 , 163-182		4
33	Electrons and phonons. Journal of Physics and Chemistry of Solids, 1960, 15, 359-360	3.9	4
32	Laws of Macroscopic Heat Transferand Their Limits1-13		4
31	Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications. <i>Sensors and Actuators B: Chemical</i> , 2015 , 213, 53-58	8.5	3
30	Metallic metasurface as a directional and monochromatic thermal emitter 2015,		3
29	Tunable bandwidth and nonlinearities in an atom-photon interface with subradiant states. <i>Physical Review A</i> , 2018 , 98,	2.6	3
28	Toward high efficiency ultra-thin CIGSe based solar cells using light management techniques 2012,		3

27	A numerical evaluation of Rayleigh's theory applied to scattering by randomly rough dielectric surfaces. <i>Waves in Random and Complex Media</i> , 1998 , 8, 79-101		3
26	Backscattering enhancement by subsurface particles. <i>Optics Communications</i> , 1995 , 114, 13-17	2	3
25	Numerical simulation of the mean field in a composite medium. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1994 , 207, 146-150	3.3	3
24	. Waves in Random and Complex Media, 1998 , 8, 79-101		3
23	Enhancing Light Absorption in a Nanovolume with a Nanoantenna: Theory and Figure of Merit. <i>ACS Photonics</i> , 2020 , 7, 1523-1528	6.3	2
22	Introduction to Surface Plasmon Theory. Springer Series in Optical Sciences, 2012, 105-148	0.5	2
21	Nanoscale radiative heating of a sample with a probe. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 249, 462-465	2.8	2
20	General relation between spatial coherence and absorption. <i>Optics Express</i> , 2021 , 29, 425	3.3	2
19	Dispersion-based intertwined SEIRA and SPR effect detection of 2,4-dinitrotoluene using a plasmonic metasurface. <i>Optics Express</i> , 2020 , 28, 39595-39605	3.3	2
18	Time-frequency encoded single-photon generation and broadband single-photon storage with a tunable subradiant state. <i>Optica</i> , 2021 , 8, 95	8.6	2
17	A surface-scattering model satisfying energy conservation and reciprocity. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2016 , 171, 4-14	2.1	1
16	Hybrid metal/semiconductor lasers based on confined Tamm plasmons 2014,		1
15	Controlling Thermal Radiation with Surface Waves. <i>Challenges and Advances in Computational Chemistry and Physics</i> , 2013 , 283-327	0.7	1
14	Lambertian back reflector in Cu(InGa)Se2solar cell: optical modeling and characterization 2013,		1
13	Design Of A Fully Automated Bidirectional Laser Reflectometer; Application To Emissivity Measurement 1989 , 0967, 184		1
12	Impedance of a Nanoantenna and a Quantum Emitter 2011 ,		1
11	Metallo-dielectric metasurfaces for thermal emission with controlled spectral bandwidth and angular aperture. <i>Optical Materials Express</i> , 2022 , 12, 1	2.6	1
10	Theory of Imaging in Near-field Microscopy 1996, 1-26		1

9	Speckle Pattern in the Near Field. Nanostructure Science and Technology, 2007, 409-433	0.9	1
8	Increasing the bandwidth of coaxial aperture arrays in radar frequencies. <i>Applied Physics A:</i> Materials Science and Processing, 2011, 103, 645-648	2.6	
7	Electrical excitation of surface phonon-polaritons in III-V heterostructures: A Monte Carlo study. <i>Journal of Physics: Conference Series</i> , 2009 , 193, 012015	0.3	
6	Radiative and non-radiative coupling between a molecule and a metallic tip. <i>European Physical Journal Special Topics</i> , 2004 , 119, 281-282		
5	Spatial and Temporal Coherence in a Random Medium : Transition between Ballistic to Diffusive Regime 2005 , FThC2		
4	Optical properties of glasses or films containing nanoclusters: a numerical simulation. <i>Journal of Non-Crystalline Solids</i> , 1996 , 196, 95-100	3.9	
3	Scattering by a Thin Slab: Comparison Between Radiative Transfer and Electromagnetic Simulation 2001 , 299-305		
2	Near field scattered by subsurface particles 1993 , 209-220		
1	Electrical generation of visible surface plasmon polaritons by a nanopillars antenna array. <i>APL Photonics</i> . 2021 . 6. 056102	5.2	