Vaishali Sharda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4334000/publications.pdf

Version: 2024-02-01

		1307594	1125743	
13	267	7	13	
papers	citations	h-index	g-index	
1.0	1.2	1.0	250	
13	13	13	358	
all docs	docs citations	times ranked	citing authors	

#	Article	lF	CITATIONS
1	Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts. Agricultural Water Management, 2020, 233, 106061.	5.6	69
2	A multi-scale and multi-model gridded framework for forecasting crop production, risk analysis, and climate change impact studies. Environmental Modelling and Software, 2019, 115, 144-154.	4.5	48
3	An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands. Environmental Modelling and Software, 2015, 72, 341-355.	4.5	43
4	DSSAT-MODFLOW: A new modeling framework for exploring groundwater conservation strategies in irrigated areas. Agricultural Water Management, 2020, 232, 106033.	5.6	31
5	Simulating the Impacts of Irrigation Levels on Soybean Production in Texas High Plains to Manage Diminishing Groundwater Levels. Journal of the American Water Resources Association, 2019, 55, 56-69.	2.4	19
6	Transition Pathways to Sustainable Agricultural Water Management: A Review of Integrated Modeling Approaches. Journal of the American Water Resources Association, 2019, 55, 6-23.	2.4	13
7	MOD\$\$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions. Agricultural Water Management, 2020, 238, 106194.	5.6	11
8	The Impact of Spatial Soil Variability on Simulation of Regional Maize Yield. Transactions of the ASABE, 2017, 60, 2137-2148.	1.1	8
9	Development of Community Water Deficit Index: Drought-Forecasting Tool for Small- to Mid-Size Communities of the Southeastern United States. Journal of Hydrologic Engineering - ASCE, 2013, 18, 846-858.	1.9	7
10	Evaluating optimal irrigation strategies for maize in Western Kansas. Agricultural Water Management, 2021, 246, 106677.	5.6	6
11	Value of ENSO-Forecasted Drought Information for the Management of Water Resources of Small to Mid-Size Communities. Transactions of the ASABE, 2016, 59, 1733-1744.	1.1	5
12	Use of Multiple Environment Variety Trials Data to Simulate Maize Yields in the Ogallala Aquifer Region: A Two Model Approach. Journal of the American Water Resources Association, 2021, 57, 281-295.	2.4	4
13	Kansas Center Pivot Uniformity Evaluation Overview. Applied Engineering in Agriculture, 2019, 35, 867-874	0.7	3