
Joseph S Jewell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4333964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roughness Effects on the Crossflow Instability on the HIFiRE-5 Geometry. , 2022, , .		2
2	Hypersonic Boundary-Layer Instabilities over Ogive-Cylinder Models. , 2022, , .		5
3	High-Speed Schlieren Visualization in Mach-6 Quiet Tunnel. , 2022, , .		9
4	Simulated Focused Laser Differential Interferometry of Time-Varying Signals. , 2022, , .		3
5	Boundary-Layer Instabilities Over a Cone-Cylinder-Flare Model at Mach 6. , 2022, , .		4
6	Characterization of instability mechanisms on sharp and blunt slender cones at Mach 6. Journal of Fluid Mechanics, 2022, 936, .	3.4	22
7	Experimental Measurements of Hypersonic Instabilities over Ogive-Cylinders at Mach 6. AIAA Journal, 2022, 60, 4492-4508.	2.6	14
8	Linear Instabilities over Ogive-Cylinder Models at Mach 6. AIAA Journal, 2022, 60, 4478-4491.	2.6	9
9	Boundary-Layer Analysis in Mach-6 Quiet Tunnel Using Schlieren Methods. , 2022, , .		0
10	Focused Laser Differential Interferometry Performance Through Wind Tunnel Boundary Layers. , 2022, , .		1
11	Investigation of Second-Mode Instability Attenuation Over Porous Materials in Mach-6 Quiet Flow. , 2022, , .		4
12	Combined Bluntness and Roughness Effects on Cones at Hypersonic Speeds. , 2022, , .		2
13	Experimental Measurements of Hypersonic Instabilities over Ogive-Cylinders at Mach 6. , 2021, , .		4
14	Separation Bubble Variation Due to Small Angles of Attack for an Axisymmetric Model at Mach 6. , 2021, , .		5
15	Femtosecond Laser Electronic Excitation Tagging Velocimetry in a Mach Six Quiet Tunnel. AIAA Journal, 2021, 59, 768-772.	2.6	12
16	Focused Laser Differential Interferometry with Contoured Tunnel Windows. AIAA Journal, 2021, 59, 419-429.	2.6	26
17	HIFiRE-5b Boundary-Layer Transition Length and Turbulent Overshoot. Journal of Spacecraft and Rockets, 2021, 58, 265-283.	1.9	5
18	Effect of surface cooling on second-mode dominated hypersonic boundary layer transition. Experiments in Fluids, 2021, 62, 1.	2.4	15

JOSEPH S JEWELL

#	Article	IF	CITATIONS
19	Propagation of Controlled Disturbances through an Axisymmetric Separation Bubble at Mach 6. , 2021, , .		5
20	High-Speed Schlieren Visualization of Mach 6 Flow Past a Cone with Varied Parameters. , 2020, , .		1
21	Instability Measurements on an Axisymmetric Separation Bubble at Mach 6. , 2020, , .		32
22	100-kHz PLEET for hypersonic flow velocity measurements in a Mach 6 Ludwieg Tube. , 2020, , .		0
23	Focused Laser Differential Interferometry for Hypersonic Flow Instability Measurements with Contoured Tunnel Windows. , 2020, , .		22
24	Experimental Investigation of Optical Distortion in Hypersonic Flows at Mach 6. , 2020, , .		1
25	100 kHz PLEET velocimetry in a Mach-6 Ludwieg tube. Optics Express, 2020, 28, 21982.	3.4	33
26	Visualizations of Hypersonic Boundary-Layer Transition on a Variable Bluntness Cone. , 2019, , .		13
27	Visualizations of Boundary-Layer Transition on a Sharp Cone at Mach 6. , 2019, , .		1
28	Effect of Carbon-based Ablation Products on Boundary Layer Stability. , 2019, , .		1
29	Disturbance Speed Measurements in a Circular Jet via Double Focused Laser Differential Interferometry. , 2019, , .		43
30	Nonmodal Growth of Traveling Waves on Blunt Cones at Hypersonic Speeds. AIAA Journal, 2019, 57, 4738-4749.	2.6	39
31	Effect of CO2 Concentration in the Hypersonic Boundary Layer on Second Mode Disturbances. , 2019, ,		1
32	Hypersonic shock-wave/boundary-layer interactions on a cone/flare. Experimental Thermal and Fluid Science, 2019, 109, 109911.	2.7	24
33	HIFiRE-5b Boundary-Layer Transition Length and Turbulent Overshoot. , 2019, , .		2
34	First and Fifth Hypersonic International Flight Research Experimentation's Flight and Ground Tests. Journal of Spacecraft and Rockets, 2019, 56, 421-431.	1.9	17
35	Effects of Attitude on HIFiRE-5b Boundary-Layer Transition. Journal of Spacecraft and Rockets, 2019, 56, 1045-1059.	1.9	4
36	Nonmodal Growth of Traveling Waves on Blunt Cones at Hypersonic Speeds. , 2019, , .		3

Nonmodal Growth of Traveling Waves on Blunt Cones at Hypersonic Speeds. , 2019, , . 36

JOSEPH S JEWELL

#	Article	IF	CITATIONS
37	Nose-Tip Bluntness Effects on Transition at Hypersonic Speeds. Journal of Spacecraft and Rockets, 2019, 56, 369-387.	1.9	70
38	HIFiRE-1 and -5 Flight and Ground Tests. , 2018, , .		8
39	Nosetip bluntness effects on transition at hypersonic speeds: experimental and numerical analysis under NATO STO AVT-240. , 2018, , .		13
40	Transition on a Variable Bluntness 7-Degree Cone at High Reynolds Number. , 2018, , .		19
41	HIFIRE-5b Heat Flux and Boundary-Layer Transition. Journal of Spacecraft and Rockets, 2018, 55, 1315-1328.	1.9	19
42	Experimental Investigation of Image Distortion in a Mach 6 Hypersonic Flow. , 2018, , .		4
43	Hypersonic Shock-Wave/Boundary-Layer Interactions on a Cone/Flare Model. , 2018, , .		8
44	HIFiRE-5b Boundary-Layer Transition With Attitude. , 2018, , .		3
45	Turbulent Hypersonic Flow Effects on Optical Sensor Performance. , 2018, , .		4
46	HIFiRE-5b Flow Computations and Attitude Determination via Comparison with Flight Data. Journal of Spacecraft and Rockets, 2018, 55, 1356-1368.	1.9	9
47	AFRL Ludwieg Tube Initial Performance. , 2017, , .		37
48	Transient Startup Simulations for a Large Mach 6 Quiet Ludwieg Tube. , 2017, , .		2
49	Correlation of HIFiRE-5a Flight Data with Computed Pressure and Heat Transfer. Journal of Spacecraft and Rockets, 2017, 54, 1142-1152.	1.9	13
50	Turbulent spots in hypervelocity flow. Experiments in Fluids, 2017, 58, 1.	2.4	16
51	HIFiRE-5b Heat Flux and Boundary-Layer Transition. , 2017, , .		21
52	Correlation of HIFiRE-5b Flight Data With Computed Pressure and Heat Transfer for Attitude Determination. , 2017, , .		10
53	Boundary-Layer Stability Analysis for Stetson's Mach 6 Blunt-Cone Experiments. Journal of Spacecraft and Rockets, 2017, 54, 258-265.	1.9	69
54	Effects of Shock-Tube Cleanliness on Hypersonic Boundary Layer Transition at High Enthalpy. AIAA Journal, 2017, 55, 332-338.	2.6	29

JOSEPH S JEWELL

#	ARTICLE	IF	CITATIONS
55	Disturbance and Phase Speed Measurements for Shock Tubes and Hypersonic Boundary-Layer Instability. , 2016, , .		32
56	Boundary Layer Stability Analysis for Stetsonâ \in M s Mach 6 Blunt Cone Experiments. , 2016, , .		10
57	Correlation of HIFiRE-5 Flight Data With Computed Pressure and Heat Transfer. , 2015, , .		5
58	Effects of Shock-Tube Cleanliness on Slender-Body Hypersonic Instability and Transition Studies at High-Enthalpy. , 2015, , .		4
59	Transition Within a Hypervelocity Boundary Layer on a 5-Degree Half-Angle Cone in Air/CO2 Mixtures. , 2013, , .		22
60	Turbulent Spot Observations within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone. , 2012, , .		18
61	Bubbles emerging from a submerged granular bed. Journal of Fluid Mechanics, 2011, 666, 189-203.	3.4	16
62	Carbon Dioxide Injection for Hypervelocity Boundary Layer Stability. , 2010, , .		33
63	The Effect of a Porous Thrust Surface on Detonation Tube Impulse. , 2003, , .		2