
Baihua Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4333886/publications.pdf Version: 2024-02-01

Βλιμιίλ Οι

#	Article	IF	CITATIONS
1	Surface Spinel-Coated and Polyanion-Doped Co-Free Li-Rich Layered Oxide Cathode for High-Performance Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 7464-7473.	1.8	13
2	Boosting Fast Sodium Ion Storage by Synergistic Effect of Heterointerface Engineering and Nitrogen Doping Porous Carbon Nanofibers. Small, 2022, 18, e2107514.	5.2	25
3	Boosting Fast Sodium Ion Storage by Synergistic Effect of Heterointerface Engineering and Nitrogen Doping Porous Carbon Nanofibers (Small 13/2022). Small, 2022, 18, .	5.2	3
4	Simultaneously estimating two battery states by combining a long short-term memory network with an adaptive unscented Kalman filter. Journal of Energy Storage, 2022, 50, 104553.	3.9	30
5	Sodiophilic Zn/SnO2 porous scaffold to stabilize sodium deposition for sodium metal batteries. Chemical Engineering Journal, 2021, 404, 126469.	6.6	35
6	Multifunctional roles of carbonâ€based hosts for Liâ€metal anodes: A review. , 2021, 3, 303-329.		93
7	Homogeneous bottom-growth of lithium metal anode enabled by double-gradient lithiophilic skeleton. Journal of Energy Chemistry, 2021, 57, 392-400.	7.1	35
8	Utilizing the different distribution habit of La and Zr in Li-rich Mn-based cathode to achieve fast lithium-ion diffusion kinetics. Journal of Power Sources, 2021, 499, 229915.	4.0	21
9	Boosting the Electrochemical Performance of Li- and Mn-Rich Cathodes by a Three-in-One Strategy. Nano-Micro Letters, 2021, 13, 205.	14.4	28
10	One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Materials, 2020, 25, 636-643.	9.5	101
11	Facile fabrication of core-shell Ni3Se2/Ni nanofoams composites for lithium ion battery anodes. Journal of Materials Science and Technology, 2020, 38, 119-124.	5.6	29
12	Surface Ni-rich engineering towards highly stable Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials. Energy Storage Materials, 2020, 25, 76-85.	9.5	47
13	3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 313-322.	5.2	76
14	A three-dimensional network of graphene/silicon/graphene sandwich sheets as anode for Li-ion battery. Thin Solid Films, 2020, 693, 137702.	0.8	9
15	Understanding Protection Mechanisms of Graphene-Encapsulated Silicon Anodes with <i>Operando</i> Raman Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 35532-35541.	4.0	17
16	Bimetallic MOF-derived CNTs-grafted carbon nanocages as sulfur host for high-performance lithium–sulfur batteries. Electrochimica Acta, 2020, 349, 136378.	2.6	33
17	A novel morphology-controlled synthesis of Na+-doped Li- and Mn-rich cathodes by the self-assembly of amphiphilic spherical micelles. Sustainable Materials and Technologies, 2020, 25, e00171.	1.7	10
18	Ion Reservoir Enabled by Hierarchical Bimetallic Sulfides Nanocages Toward Highly Effective Sodium Storage. Small, 2020, 16, e1907261.	5.2	31

Ваїниа Qu

#	Article	IF	CITATIONS
19	3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Research, 2020, 13, 2136-2142.	5.8	75
20	Manipulating External Electric Field and Tensile Strain toward High Energy Density Stability in Fast-Charging Li-Rich Cathode Materials. Journal of Physical Chemistry Letters, 2020, 11, 2322-2329.	2.1	10
21	Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium–sulfur batteries. Nanoscale Horizons, 2020, 5, 720-729.	4.1	30
22	Rational Design of Layered SnS2 on Ultralight Graphene Fiber Fabrics as Binder-Free Anodes for Enhanced Practical Capacity of Sodium-Ion Batteries. Nano-Micro Letters, 2019, 11, 66.	14.4	44
23	The full gradient design in Li-rich cathode for high performance lithium ion batteries with reduced voltage decay. Journal of Power Sources, 2019, 437, 226902.	4.0	34
24	Engineering oxygen vacancies in hierarchically Li-rich layered oxide porous microspheres for high-rate lithium ion battery cathode. Science China Materials, 2019, 62, 1374-1384.	3.5	58
25	Uniform Na ⁺ Dopingâ€Induced Defects in Li―and Mnâ€Rich Cathodes for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Science, 2019, 6, 1802114.	5.6	78
26	High Initial Reversible Capacity and Long Life of Ternary SnO2-Co-carbon Nanocomposite Anodes for Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 18.	14.4	41
27	A Guideline for Tailoring Lattice Oxygen Activity in Lithium-Rich Layered Cathodes by Strain. Journal of Physical Chemistry Letters, 2019, 10, 2202-2207.	2.1	6
28	Construction of complex WO3-SnO2 hollow nanospheres as a high-performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 744, 375-380.	2.8	20
29	Ni 3 Se 2 electrodes for high performance lithium-ion and sodium-ion batteries. Materials Letters, 2018, 220, 86-89.	1.3	18
30	Surfactant-Assisted Synthesis of High Energy {010} Facets Beneficial to Li-Ion Transport Kinetics with Layered LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ . ACS Sustainable Chemistry and Engineering, 2018, 6, 6312-6320.	3.2	35
31	ZnO-carbon nanofibers for stable, high response, and selective H ₂ S sensors. Nanotechnology, 2018, 29, 275501.	1.3	29
32	Porous NaTi2(PO4)3 nanoparticles coated with a thin carbon layer for sodium-ion batteries with enhanced rate and cycling performance. Materials Letters, 2018, 218, 14-17.	1.3	5
33	Tinâ€Assisted Sb ₂ S ₃ Nanoparticles Uniformly Grafted on Graphene Effectively Improves Sodiumâ€ion Storage Performance. ChemElectroChem, 2018, 5, 811-816.	1.7	33
34	Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 10437-10444.	4.0	175
35	General Airbrush‧praying/Electrospinning Strategy for Ultrahigh Arealâ€Capacity LiFePO ₄ â€Based Cathodes. ChemElectroChem, 2018, 5, 2330-2335.	1.7	10
36	A facile method to hunt for durable high-rate capability Na0.44MnO2. Journal of Power Sources, 2018, 395, 395-402.	4.0	32

Ваїниа Qu

#	Article	IF	CITATIONS
37	Rational design of graphene-encapsulated NiCo2O4 core-shell nanostructures as an anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2017, 705, 314-319.	2.8	27
38	Reduced graphene oxide uniformly anchored with ultrafine CoMn 2 O 4 nanoparticles as advance anode materials for lithium and sodium storage. Journal of Alloys and Compounds, 2017, 716, 30-36.	2.8	27
39	A facial method to synthesize Se/NiO composites for high performance lithium ion battery electrodes. Materials Letters, 2017, 203, 1-4.	1.3	11
40	Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries. Chemical Communications, 2017, 53, 6780-6783.	2.2	42
41	Ultra-long cycle life of sodium-ion batteries in VS4-G nanocomposite structure. Materials Letters, 2017, 205, 52-55.	1.3	27
42	Metal-Organic Frameworks Derived Nanocomposites of Mixed-Valent MnO Nanoparticles In-Situ Grown on Ultrathin Carbon Sheets for High-Performance Supercapacitors and Lithium-Ion Batteries. Electrochimica Acta, 2017, 256, 63-72.	2.6	31
43	Co3O4@(Fe-Doped)Co(OH)2 Microfibers: Facile Synthesis, Oriented-Assembly, Formation Mechanism, and High Electrocatalytic Activity. ACS Applied Materials & Interfaces, 2017, 9, 30880-30890.	4.0	20
44	Multistage Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Microâ€architecture towards Highâ€Performance Cathode Materials for Lithiumâ€ion Batteries. ChemElectroChem, 2017, 4, 3250-3256.	1.7	17
45	Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe 3 O 4 nano-flower architecture with high lithium storage capacity and excellent rate capability. Journal of Power Sources, 2017, 365, 98-108.	4.0	61
46	Controlled synthesis of iron sulfide coated by carbon layer to improve lithium and sodium storage. Electrochimica Acta, 2017, 247, 1080-1087.	2.6	56
47	Rational combination of α-MnS/rGO nanocomposites for high-performance lithium-ion batteries. CrystEngComm, 2016, 18, 6200-6204.	1.3	35
48	Extending the cycle life of Na ₃ V ₂ (PO ₄) ₃ cathodes in sodium-ion batteries through interdigitated carbon scaffolding. Journal of Materials Chemistry A, 2016, 4, 14669-14674.	5.2	57
49	Promotion of reversible Li+ storage in transition metal dichalcogenides by Ag nanoclusters. NPG Asia Materials, 2016, 8, e247-e247.	3.8	16
50	Rational synthesis of metal–organic framework composites, hollow structures and their derived porous mixed metal oxide hollow structures. Journal of Materials Chemistry A, 2016, 4, 183-192.	5.2	77
51	Origin of the Increased Li ⁺ torage Capacity of Stacked SnS ₂ /Graphene Nanocomposite. ChemElectroChem, 2015, 2, 1138-1143.	1.7	29
52	Investigating the Energy Storage Mechanism of SnS ₂ -rGO Composite Anode for Advanced Na-Ion Batteries. Chemistry of Materials, 2015, 27, 5633-5640.	3.2	184
53	Facile approach to prepare porous GeO2/SnO2 nanofibers via a single spinneret electrospinning technique as anodes for Lithium-ion batteries. Ceramics International, 2015, 41, 10308-10313.	2.3	23
54	Double Transition-Metal Chalcogenide as a High-Performance Lithium-Ion Battery Anode Material. Industrial & Engineering Chemistry Research, 2014, 53, 17901-17908.	1.8	44

Ваїниа Qu

#	Article	IF	CITATIONS
55	Construction of 3D flower-like MoS2 spheres with nanosheets as anode materials for high-performance lithium ion batteries. Electrochimica Acta, 2014, 115, 165-169.	2.6	90
56	Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy, 2014, 3, 88-94.	8.2	189
57	Layered SnS ₂ â€Reduced Graphene Oxide Composite – A Highâ€Capacity, Highâ€Rate, and Longâ€Cycle Life Sodiumâ€lon Battery Anode Material. Advanced Materials, 2014, 26, 3854-3859.	11.1	744
58	High-Performance Lithium-Ion Battery Anode by Direct Growth of Hierarchical ZnCo ₂ O ₄ Nanostructures on Current Collectors. ACS Applied Materials & Interfaces, 2014, 6, 731-736.	4.0	137
59	In situ nitrogenated graphene–few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale, 2013, 5, 7890.	2.8	182
60	High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet–nanowire cluster arrays as self-supported electrodes. Nanoscale, 2013, 5, 9812.	2.8	242
61	Hierarchical tin-based microspheres: Solvothermal synthesis, chemical conversion, mechanism and application in lithium ion batteries. Electrochimica Acta, 2013, 106, 386-391.	2.6	17
62	Low-temperature preparation of ultrathin nanoflakes assembled tremella-like NiO hierarchical nanostructures for high-performance lithium-ion batteries. Materials Letters, 2013, 108, 92-95.	1.3	17
63	Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 5596.	5.2	250
64	Synthesis of Bacteria Promoted Reduced Graphene Oxide-Nickel Sulfide Networks for Advanced Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 7335-7340.	4.0	130
65	Rational design of Au–NiO hierarchical structures with enhanced rate performance for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7023.	5.2	50
66	Cathode-Control Alloying at an Au-ZnSe Nanowire Contact via in Situ Joule Heating. Chinese Physics Letters, 2012, 29, 088105.	1.3	8
67	β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale, 2012, 4, 7810.	2.8	145
68	Morphology-controlled preparation of a-Fe2O3 during evaporating aqueous FeCl3 solution and investigating the electrochemical properties of various a-Fe2O3 morphologies. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	0
69	A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties. Journal of Materials Chemistry, 2012, 22, 3868.	6.7	125
70	Facile synthesis of flower-like Cu3BiS3 hierarchical nanostructures and their electrochemical properties for lithium-ion batteries. CrystEngComm, 2012, 14, 550-554.	1.3	47
71	α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries. Nanoscale, 2012, 4, 3422.	2.8	92
72	Synthesis of ZnSnO3 mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 25373.	6.7	91

Βαιμμα Qu

#	Article	IF	CITATIONS
73	Synthesis of mesoporous NiO nanospheres as anode materials for lithium ion batteries. Electrochimica Acta, 2012, 80, 140-147.	2.6	95
74	Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries. Nanoscale, 2012, 4, 5731.	2.8	14
75	Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres. Materials Letters, 2012, 66, 72-75.	1.3	97
76	Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity. Nanoscale, 2011, 3, 4389.	2.8	83
77	Facile solvothermal synthesis of mesoporous Cu2SnS3 spheres and their application in lithium-ion batteries. Nanoscale, 2011, 3, 3646.	2.8	135
78	Enhancement of current carrying capacity of the strained ZnSe nanowire. Journal of Applied Physics, 2011, 109, 104311.	1.1	7
79	Synthesis and characterization of phase-purity Cu9BiS6 nanoplates. Materials Letters, 2010, 64, 1091-1094.	1.3	8
80	Facile preparation of TiO2 nanostructures by direct annealing of the Ti foil. Materials Letters, 2010, 64, 2392-2394.	1.3	5
81	Advances in the structure and composition design of zinc anodes for high performance zinc ion batteries. Sustainable Energy and Fuels, 0, , .	2.5	5