Kamran Amini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/433379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural hydroxyapatite/diopside nanocomposite scaffold for bone tissue engineering applications: physical, mechanical, bioactivity and biodegradation evaluation. Materials Technology, 2022, 37, 36-48.	3.0	10
2	Evaluation the Properties of Polycaprolactone/Fluorapatite Nano-biocomposite. Journal of Bionic Engineering, 2022, 19, 179-187.	5.0	4
3	Effect of Vanadium and Rare Earth on the Structure, Phase Transformation Kinetics and Mechanical Properties of Carbide-Free Bainitic Steel Containing Silicon. Applied Sciences (Switzerland), 2022, 12, 1668.	2.5	4
4	Role of interlayer composition in microstructure and mechanical properties during TLP bonding of GTD-111/IN-718 superalloys. Transactions of Nonferrous Metals Society of China, 2022, 32, 908-926.	4.2	2
5	The effect of shot peening time on mechanical properties and residual stress in Ti-6Al-4V alloy. Metallurgical Research and Technology, 2022, 119, 401.	0.7	6
6	Investigating the effect of deep cryogenic heat treatment on the wear behavior of 100Cr6 alloy steel. Metallic Materials, 2021, 52, 163-169.	0.3	11
7	Evolution of microstructure and mechanical properties on dissimilar transient liquid phase (TLP) bonding of GTD-111 and IN-718 by BNi-9 (AWS A5.8/A5.8M) interlayer. Welding in the World, Le Soudage Dans Le Monde, 2021, 65, 329-343.	2.5	5
8	Effect of tool offset on microstructure and mechanical properties of dissimilar copper-brass friction stir welding. Metallurgical Research and Technology, 2021, 118, 307.	0.7	2
9	The Effect of Silicon Percentage and Shot Peening Operation on Mechanical Properties of Hadfield Steel Containing 17% Manganese. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 589-596.	1.1	1
10	Analysis of hadfield scrap shredder hammer fracture and replacing it with carbide-free nano-bainitic steel. Engineering Failure Analysis, 2020, 109, 104230.	4.0	8
11	Surface treatment of titanium dental implant with H2O2 solution. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1281-1286.	4.9	10
12	Effect of Shot Peening Operation on the Microstructure and Wear Behavior of AZ31 Magnesium Alloy. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 164-168.	1.1	10
13	Fabrication and Characterization of Poly Lactic Acid Scaffolds by Fused Deposition Modeling for Bone Tissue Engineering. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 248-251.	1.0	21
14	Corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding in alkaline solution. Journal of Central South University, 2019, 26, 1573-1581.	3.0	3
15	Linking air-void system and mechanical properties to salt-scaling resistance of concrete containing slag cement. Cement and Concrete Composites, 2019, 104, 103364.	10.7	11
16	Effect of Molybdenum on Metallurgical and Wear Properties of Fe–Cr–C Hard facing alloy. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, 942-950.	1.1	3
17	The Effect of Deep Cryogenic Treatment on Microstructure and Wear Behavior of H11 Tool Steel. Physics of Metals and Metallography, 2019, 120, 888-897.	1.0	19
18	Effect of finishing practices on surface structure and salt-scaling resistance of concrete. Cement and Concrete Composites, 2019, 104, 103345.	10.7	7

KAMRAN AMINI

#	Article	IF	CITATIONS
19	The combined effect of cryogenic and boronising treatments on the wear behaviour and microstructure of DIN 1.2344 steel. Transactions of the Institute of Metal Finishing, 2019, 97, 121-128.	1.3	5
20	Effect of mixture proportions on concrete performance. Construction and Building Materials, 2019, 212, 77-84.	7.2	11
21	Effect of curing regimes on hardened performance of concrete containing slag cement. Construction and Building Materials, 2019, 211, 771-778.	7.2	8
22	Development of Prediction Models for Mechanical Properties and Durability of Concrete Using Combined Nondestructive Tests. Journal of Materials in Civil Engineering, 2019, 31, 04018378.	2.9	9
23	THE EFFECT OF ELECTROLYTE TEMPERATURE AND SEALING SOLUTION IN ANODIZING OPERATION ON HARDNESS AND WEAR BEHAVIOR OF 7075 -T6 ALUMINUM ALLOY. Surface Review and Letters, 2019, 26, 1850143.	1.1	5
24	Effects of Mixture Proportioning, Curing, and Finishing on Concrete Surface Hardness. ACI Materials Journal, 2019, 116, .	0.2	2
25	The Effect of Tempering Temperature on Microstructure and the Mechanical Properties of Forged Steel Containing Chrome, Manganese and Molybdenum. Mechanika, 2019, 24, .	0.5	3
26	Comparison between Quench Tempering and Quasi Quench Partitioning Treatment on Structure and Mechanical Properties of Cr-Mo Steel. Materials Performance and Characterization, 2019, 8, 297-304.	0.3	0
27	Statistical Modeling of Hydraulic and Mechanical Properties of Pervious Concrete Using Nondestructive Tests. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	15
28	Fabrication and evaluation of amalgam/nano hydroxyapatite composites for dental restoration. Materials Research Express, 2018, 5, 105403.	1.6	1
29	Evaluation of the microstructure and mechanical properties of friction stir-welded copper/brass dissimilar joints. Materials Research Express, 2018, 5, 076517.	1.6	3
30	EFFECTS OF CRYOGENIC TREATMENT ON MICROSTRUCTURE AND WEAR RESISTANCE OF Fe-0.35C-6.3Cr MARTENSITIC STEEL. Acta Metallurgica Slovaca, 2018, 24, 134-146.	0.7	3
31	A Study on the Effect of Austempering Temperature on Microstructure and Mechanical Properties of DIN 36CrNiMo4 Carbide-Free Nano Bainitic Steel. Materials Performance and Characterization, 2018, 8, 20180022.	0.3	0
32	Structural modification of a steam turbine blade. IOP Conference Series: Materials Science and Engineering, 2017, 203, 012007.	0.6	6
33	Influence of heat treatment on mechanical properties and microstructure of the Al2024/SiC composite produced by multi–pass friction stir processing. Measurement: Journal of the International Measurement Confederation, 2017, 104, 151-158.	5.0	41
34	The effect of shot peening and precipitation hardening on the wear behavior of high manganese austenitic steels. Metallurgical Research and Technology, 2017, 114, 507.	0.7	4
35	Friction Stir Welding of Dissimilar Joints Between Commercially Pure Titanium Alloy and 7075 Aluminium Alloy. Transactions of Famena, 2017, 41, 81-90.	0.6	6
36	The Effect of Heat Treatment on Mechanical Properties and Microstructure of the AISI 422 Martensitic Stainless Steel. Mechanika, 2017, 22, .	0.5	3

Kamran Amini

#	Article	IF	CITATIONS
37	Investigating the effect of the deep cryogenic heat treatment on the corrosion behavior of the 1.2080 tool steel. Metallic Materials, 2016, 54, 331-338.	0.3	2
38	Friction stir welding of dissimilar joint of aluminum alloy 5083 and commercially pure titanium. Metallic Materials, 2016, 54, 71-75.	0.3	13
39	Influence of welding speed on corrosion behaviour of friction stir welded AA5086 aluminium alloy. Journal of Central South University, 2016, 23, 1301-1311.	3.0	24
40	Cryogenic heat treatment of the ferrous materials – a review of the current state. Metallurgical Research and Technology, 2016, 113, 611.	0.7	12
41	Effect of Carbide Distribution on Corrosion Behavior of the Deep Cryogenically Treated 1.2080 Steel. Journal of Materials Engineering and Performance, 2016, 25, 365-373.	2.5	10
42	Effect of binder composition on time-dependent stability and robustness characteristics of self-consolidating mortar subjected to prolonged agitation. Construction and Building Materials, 2016, 112, 654-665.	7.2	12
43	Linking stability characteristics to material performance of self-consolidating concrete-equivalent-mortar incorporating fly ash and metakaolin. Construction and Building Materials, 2016, 105, 206-217.	7.2	19
44	Advancing concrete strength prediction using non-destructive testing: Development and verification of a generalizable model. Construction and Building Materials, 2016, 102, 762-768.	7.2	74
45	Investigating the Effect of Passes Number on Microstructural and Mechanical Properties of the Al2024/SiC Composite Produced by Friction Stir Processing. Mechanika, 2016, 21, .	0.5	2
46	Microstructure and Mechanical Properties of AA5086 Aluminum Alloy by Friction Stir Welding. Mechanika, 2016, 22, .	0.5	0
47	Investigating the effect of holding duration at a deep cryogenic temperature on the wear behavior of DIN 1.2080 (D3) tool steel. Metallurgical Research and Technology, 2015, 112, 401.	0.7	0
48	Effect of Deep Cryogenic Heat Treatment on the Wear Behavior of Carburized DIN 1.7131 Grade Steel. Acta Metallurgica Sinica (English Letters), 2015, 28, 348-353.	2.9	16
49	Investigating the effect of quench environment and deep cryogenic treatment on the wear behavior of AZ91. Materials & Design, 2014, 54, 154-160.	5.1	57
50	Investigation of the Effect of Heat Treatment on the Mechanical Properties and Microstructure of DIN 1.4057 Martensitic Stainless Steel. Metal Science and Heat Treatment, 2014, 55, 499-503.	0.6	6
51	Investigating the effect of titanium addition on the wear resistance of Hadfield steel. Metallurgical Research and Technology, 2014, 111, 375-382.	0.7	12
52	Investigating the effect of ball milling during the deep cryogenic heat treatment of the 1.2080 tool steel. Vacuum, 2013, 90, 70-74.	3.5	16
53	Effect of mineral admixtures on fluidity and stability of self-consolidating mortar subjected to prolonged mixing time. Construction and Building Materials, 2013, 40, 1029-1037.	7.2	58
54	Investigating the effect of the quench environment on the final microstructure and wear behavior of 1.2080 tool steel after deep cryogenic heat treatment. Materials & Design, 2013, 45, 316-322.	5.1	42

Kamran Amini

#	Article	IF	CITATION
55	Investigating the effect of electric current flow on the wear behavior of 1.2080 tool steel during the deep cryogenic heat treatment. Materials & Design, 2013, 45, 103-109.	5.1	24
56	Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 795-799.	4.9	45
57	Effect of simultaneous magnetic field and deep cryogenic heat treatment on the microstructure of 1.2080 tool steel. Materials & Design, 2012, 35, 484-490.	5.1	24
58	Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel. Materials & Design, 2012, 41, 114-123.	5.1	50
59	Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic heat treatment. Vacuum, 2012, 86, 1534-1540.	3.5	93
60	Effect of deep cryogenic treatment on the properties of 80CrMo12 5 tool steel. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 30-37.	4.9	21
61	Influence of different cryotreatments on tribological behavior of 80CrMo12 5 cold work tool steel. Materials & Design, 2010, 31, 4666-4675.	5.1	65