Gil Markovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4333581/publications.pdf

Version: 2024-02-01

99 6,617 40
papers citations h-index

103 103 103 7765
all docs docs citations times ranked citing authors

62596

80

g-index

#	Article	IF	CITATIONS
1	Metal nanowires grown <i>in situ</i> on polymeric fibres for electronic textiles. Nanoscale Advances, 2022, 4, 1368-1374.	4.6	6
2	Colloidal Synthesis of Crystalline Aluminum Nanoparticles for UV Plasmonics. ACS Photonics, 2022, 9, 880-887.	6.6	6
3	A Kinetic Isotope Effect in the Formation of Lanthanide Phosphate Nanocrystals. Journal of the American Chemical Society, 2022, 144, 9451-9457.	13.7	9
4	Chiral Bioinspired Plasmonics: A Paradigm Shift for Optical Activity and Photochemistry. ACS Photonics, 2022, 9, 2219-2236.	6.6	26
5	Chiral Photomelting of DNA-Nanocrystal Assemblies Utilizing Plasmonic Photoheating. Nano Letters, 2021, 21, 7298-7308.	9.1	20
6	Timeâ€resolved circularly polarized luminescence of Eu ³⁺ â€based systems. Chirality, 2021, 33, 124-133.	2.6	9
7	Enantiomeric Control of Intrinsically Chiral Nanocrystals. Advanced Materials, 2020, 32, e1905594.	21.0	27
8	Spontaneous and directed symmetry breaking in the formation of chiral nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11159-11164.	7.1	41
9	Flow-Directed Growth of Aligned Metal Nanowire Films: Toward Light-Polarizing Transparent Conductors. ACS Applied Nano Materials, 2019, 2, 3073-3080.	5.0	O
10	Enhancement of Circular Dichroism of a Chiral Material by Dielectric Nanospheres. Journal of Physical Chemistry C, 2019, 123, 5017-5022.	3.1	38
11	Contact-free conductivity probing of metal nanowire films using THz reflection spectroscopy. Nanotechnology, 2019, 30, 215702.	2.6	6
12	Determination of Handedness in a Single Chiral Nanocrystal <i>via</i> Circularly Polarized Luminescence. ACS Nano, 2019, 13, 601-608.	14.6	20
13	Circular Dichroism of Single Particles. ACS Photonics, 2018, 5, 2151-2159.	6.6	45
14	Aluminum Nanoparticles with Hot Spots for Plasmonâ€Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval. Advanced Optical Materials, 2017, 5, 1700069.	7.3	43
15	Solution Monolayer Epitaxy for Tunable Atomically Sharp Oxide Interfaces. Advanced Materials Interfaces, 2017, 4, 1700688.	3.7	3
16	Patterning Metal Nanowire-Based Transparent Electrodes by Seed Particle Printing. ACS Omega, 2017, 2, 7584-7592.	3.5	10
17	Extraordinary Hall-effect in colloidal magnetic nanoparticle films. Journal of Magnetism and Magnetic Materials, 2017, 426, 178-182.	2.3	2
18	Probing the Interaction of Quantum Dots with Chiral Capping Molecules Using Circular Dichroism Spectroscopy. Nano Letters, 2016, 16, 7467-7473.	9.1	129

#	Article	IF	Citations
19	Orientation-Sensitive Peptide-Induced Plasmonic Circular Dichroism in Silver Nanocubes. Journal of Physical Chemistry C, 2016, 120, 12751-12756.	3.1	35
20	Relation between 2D/3D chirality and the appearance of chiroptical effects in real nanostructures. Optics Express, 2016, 24, 2242.	3.4	70
21	Tracking the Verwey Transition in Single Magnetite Nanocrystals by Variable-Temperature Scanning Tunneling Microscopy. Journal of Physical Chemistry Letters, 2016, 7, 1661-1666.	4.6	20
22	Probing magnetization dynamics in individual magnetite nanocrystals using magnetoresistive scanning tunneling microscopy. Physical Review B, 2015, 92, .	3.2	6
23	The School of Chemistry at Tel Aviv University Celebrates Its 50th Jubilee. Israel Journal of Chemistry, 2015, 55, 102-113.	2.3	2
24	Self-Assembled Metallic Nanowire-Based Vertical Organic Field-Effect Transistor. ACS Applied Materials & Description of the Control of the Co	8.0	58
25	Chiroptical Study of Plasmon–Molecule Interaction: The Case of Interaction of Glutathione with Silver Nanocubes. Journal of Physical Chemistry C, 2015, 119, 17111-17116.	3.1	38
26	The stabilization of a single domain in free-standing ferroelectric nanocrystals. Journal of Physics Condensed Matter, 2014, 26, 122202.	1.8	4
27	Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nature Communications, 2014, 5, 4302.	12.8	187
28	Complete polarimetry on the asymmetric transmission through subwavelength hole arrays. Optics Express, 2014, 22, 13719.	3.4	36
29	Chiral Nanostructures with Plasmon and Exciton Resonances. , 2014, , 1-55.		1
30	Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons. Nano Letters, 2013, 13, 1203-1209.	9.1	209
31	Enantioselective Synthesis of Intrinsically Chiral Mercury Sulfide Nanocrystals. Angewandte Chemie - International Edition, 2013, 52, 1275-1279.	13.8	124
32	Chiroptical Activity in Silver Cholate Nanostructures Induced by the Formation of Nanoparticle Assemblies. Journal of Physical Chemistry C, 2013, 117, 22240-22244.	3.1	47
33	Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chemical Society Reviews, 2013, 42, 7028.	38.1	310
34	Magneto-transport and magnetization dynamics in magnetic nanoparticle assemblies. MRS Bulletin, 2013, 38, 939-944.	3.5	1
35	Seed Concentration Control of Metal Nanowire Diameter. Nano Letters, 2012, 12, 5552-5558.	9.1	33
36	Chiral Ligandiʻ£;Induced Circular Dichroism in Excitonic Absorption of Colloidal Quantum Dots. Israel Journal of Chemistry, 2012, 52, 1104-1110.	2.3	11

#	Article	IF	Citations
37	On-Surface Formation of Metal Nanowire Transparent Top Electrodes on CdSe Nanowire Array-Based Photoconductive Devices. ACS Applied Materials & Interfaces, 2012, 4, 3157-3162.	8.0	22
38	Surface Electrostatic Immobilization of Thin Layers of Water on Silver Halide. Experimental and Calculated Infrared Spectrum of Cyclic Trimer of Water and a Ponderal Isotope Effect. Langmuir, 2012, 28, 13208-13217.	3.5	6
39	Plasmonic Chiroptical Response of Silver Nanoparticles Interacting with Chiral Supramolecular Assemblies. Journal of the American Chemical Society, 2012, 134, 17807-17813.	13.7	144
40	UV induced formation of transparent Au–Ag nanowire mesh film for repairable OLED devices. Journal of Materials Chemistry, 2012, 22, 24042.	6.7	23
41	Ferroelectric effects in individual BaTiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> nanocrystals investigated by electron holography. Physical Review B. 2012, 85	3.2	18
42	Chiroptical Effects in Planar Achiral Plasmonic Oriented Nanohole Arrays. Nano Letters, 2012, 12, 2357-2361.	9.1	84
43	Highly defective MgO nanosheets from colloidal self-assembly. Journal of Materials Chemistry, 2011, 21, 9532.	6.7	29
44	The Size-Dependent Ferroelectric Phase Transition in BaTiO ₃ Nanocrystals Probed by Surface Plasmons. ACS Nano, 2011, 5, 507-515.	14.6	43
45	Synthesis of Single Crystal Hollow Silver Nanoparticles in a Fast Reaction-Diffusion Process. Chemistry of Materials, 2011, 23, 1239-1245.	6.7	72
46	Size Dependence of Chiroptical Activity in Colloidal Quantum Dots. ACS Nano, 2011, 5, 9034-9043.	14.6	124
47	Defect-induced magnetism in chemically synthesized nanoscale sheets of MgO. Physical Review B, 2011, 83, .	3.2	72
48	Probing magnetization dynamics of strongly interacting magnetic nanoparticles through magnetoresistive current noise measurements. Journal Physics D: Applied Physics, 2010, 43, 485003.	2.8	2
49	Synthesis of Chiral Silver Clusters on a DNA Template. Journal of Physical Chemistry C, 2010, 114, 15951-15954.	3.1	67
50	Broad Band Enhancement of Light Absorption in Photosystem I by Metal Nanoparticle Antennas. Nano Letters, 2010, 10, 2069-2074.	9.1	121
51	Magnetoresistive telegraph noise in Langmuir-Blodgett films of colloidal magnetite nanocrystals as seen via scanning tunneling microscopy. Physical Review B, 2009, 80, .	3.2	6
52	Inter-particle spin-polarized tunneling in arrays of magnetite nanocrystals. Journal of Magnetism and Magnetic Materials, 2009, 321, 1933-1938.	2.3	21
53	$\langle i > N < i > Methylformamide, a Hyperplectic Model for Peptides in Thin Film Infrared Spectroscopy on Planar AgX. Journal of Physical Chemistry B, 2009, 113, 5622-5632.$	2.6	6
54	Float and Compress: Honeycomb-like Array of a Highly Stable Protein Scaffold. Langmuir, 2009, 25, 5226-5229.	3. 5	13

#	Article	IF	Citations
55	Transparent Metal Nanowire Thin Films Prepared in Mesostructured Templates. Nano Letters, 2009, 9, 4246-4249.	9.1	145
56	Plasmonâ€Resonanceâ€Enhanced Absorption and Circular Dichroism. Angewandte Chemie - International Edition, 2008, 47, 4855-4857.	13.8	202
57	Scanning Tunneling Spectroscopy Study of Temperatureâ€Dependent Magnetization Switching Dynamics in Magnetic Nanoparticle Arrays. Israel Journal of Chemistry, 2008, 48, 81-86.	2.3	0
58	Complex Structures in Thin Films Detected By Infrared Spectroscopy. FASEB Journal, 2008, 22, 622.1.	0.5	0
59	Tuning a Colloidal Synthesis to Control Co ²⁺ Doping in Ferrite Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 14334-14338.	3.1	59
60	Growth of Colloidal Gold Nanostars and Nanowires Induced by Palladium Doping. Langmuir, 2007, 23, 1496-1499.	3.5	37
61	Control of Defects and Magnetic Properties in Colloidal HfO ₂ Nanorods. Advanced Materials, 2007, 19, 2608-2612.	21.0	65
62	Moleculeâ€Enhanced Surfaceâ€Enhanced Infrared Absorption Spectroscopy (MOSEIRA). ChemPhysChem, 2007, 8, 2506-2512.	2.1	7
63	Thinâ∈Film Infrared Spectroscopy of Acetonitrile. ChemPhysChem, 2007, 8, 2513-2519.	2.1	13
64	Growth of Au/Ag nanowires in thin surfactant solution films: An electron microscopy study. Journal of Colloid and Interface Science, 2007, 314, 304-309.	9.4	11
65	Iron assisted growth of copper-tipped multi-walled carbon nanotubes. Nanotechnology, 2007, 18, 495602.	2.6	3
66	Optimizing Cobalt Ferrite Nanocrystal Synthesis Using a Magneto-optical Probe. Chemistry of Materials, 2006, 18, 465-470.	6.7	87
67	Chirality of Silver Nanoparticles Synthesized on DNA. Journal of the American Chemical Society, 2006, 128, 11006-11007.	13.7	303
68	Foreword by the Guest Editors: Surfaced Enhanced Spectroscopies. Israel Journal of Chemistry, 2006, 46, NA-NA.	2.3	0
69	Formation of Goldâ^'Silver Nanowires in Thin Surfactant Solution Films. Langmuir, 2006, 22, 867-870.	3.5	37
70	Synthesis and assembly of high-quality cobalt ferrite nanocrystals prepared by a modified sol–gel technique. Journal of Magnetism and Magnetic Materials, 2005, 292, 11-16.	2.3	79
71	Magnetization dynamics in arrays of strongly interacting magnetic nanocrystals. Journal of Chemical Physics, 2005, 123, 204715.	3.0	15
72	Ferromagnetism in Colloidal Mn2+-Doped ZnO Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 20232-20236.	2.6	97

#	Article	IF	Citations
73	Surface-Enhanced Infrared Absorption and Amplified Spectra on Planar Silver Halide Fiber. Journal of Physical Chemistry B, 2004, 108, 12633-12636.	2.6	16
74	Surface-Enhanced Infrared Absorption ofp-Nitrobenzoic Acid on Planar Silver Halide Fiber. Journal of Physical Chemistry B, 2004, 108, 12873-12876.	2.6	14
75	Growth of Gold Nanorods on Surfaces. Journal of Physical Chemistry B, 2003, 107, 11579-11582.	2.6	95
76	Manifestation of the Verwey transition in the tunneling spectra of magnetite nanocrystals. Europhysics Letters, 2003, 64, 98-103.	2.0	27
77	Observation of the Verwey Transition in Fe3O4 Nanocrystals. Materials Research Society Symposia Proceedings, 2002, 746, 1.	0.1	5
78	Enhancement of Magneto-Optical Effects in Magnetite Nanocrystals Near Gold Surfaces. Journal of Physical Chemistry B, 2002, 106, 9195-9197.	2.6	39
79	Dipolar interactions in two- and three-dimensional magnetic nanoparticle arrays. Physical Review B, 2002, 66, .	3.2	154
80	First-order metal-insulator transition and spin-polarized tunneling inFe3O4nanocrystals. Physical Review B, 2002, 65, .	3.2	128
81	Alkyl Phosphonate/Phosphate Coating on Magnetite Nanoparticles:Â A Comparison with Fatty Acids. Langmuir, 2001, 17, 7907-7911.	3.5	431
82	Ordered Two-Dimensional Arrays of Ferrite Nanoparticles. Advanced Materials, 2001, 13, 1158-1161.	21.0	375
83	Architectonic Quantum Dot Solids. Accounts of Chemical Research, 1999, 32, 415-423.	15.6	349
84	Tunnel diodes fabricated from CdSe nanocrystal monolayers. Applied Physics Letters, 1999, 74, 317-319.	3.3	46
85	Spontaneous patterning of quantum dots at the air-water interface. Physical Review E, 1999, 59, R6255-R6258.	2.1	171
86	Networks of Quantum Nanodots:Â The Role of Disorder in Modifying Electronic and Optical Properties. Journal of Physical Chemistry B, 1998, 102, 7727-7734.	2.6	53
87	Fabrication and Alignment of Wires in Two Dimensions. Journal of Physical Chemistry B, 1998, 102, 6685-6687.	2.6	106
88	Reversible Metal-Insulator Transition in Ordered Metal Nanocrystal Monolayers Observed by Impedance Spectroscopy. Physical Review Letters, 1998, 80, 3807-3810.	7.8	140
89	Bound Delocalized Excited States inlâ-'XenClusters. Physical Review Letters, 1997, 79, 3391-3394.	7.8	32
90	Parallel fabrication and single-electron charging of devices based on ordered, two-dimensional phases of organically functionalized metal nanocrystals. Applied Physics Letters, 1997, 70, 3107-3109.	3.3	59

#	Article	IF	Citations
91	The solvation of Clâ^', Brâ^', and Iâ^' in acetonitrile clusters: Photoelectron spectroscopy and molecular dynamics simulations. Journal of Chemical Physics, 1996, 105, 2675-2685.	3.0	103
92	Photoelectron Spectroscopic Study of Charge-Transfer States in Clusters. The Journal of Physical Chemistry, 1994, 98, 3550-3553.	2.9	16
93	Photoelectron spectroscopy of Clâ [^] , Brâ [^] , and lâ [^] solvated in water clusters. Journal of Chemical Physics, 1994, 101, 9344-9353.	3.0	311
94	The Solvation of Halogen Anions in Water Clusters. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1994, , 13-19.	0.2	2
95	The solvation of iodine anions in water clusters: PES studies. Zeitschrift FÃ $^{1}\!\!/\!\!4$ r Physik D-Atoms Molecules and Clusters, 1993, 26, 98-100.	1.0	34
96	Charge transfer excitations in the photoelectron spectrum of Clâ^'NH3: Experiment and calculation. Journal of Chemical Physics, 1993, 99, 6201-6204.	3.0	28
97	Photoelectron spectroscopy of iodine anion solvated in water clusters. Journal of Chemical Physics, 1991, 95, 9416-9419.	3.0	159
98	Optically Active and Chiral Semiconductor Nanocrystals. , 0, , 85-98.		2
99	Nanocrystals as Model Systems for Studying the Interplay Between Crystallization and Chirality. Israel Journal of Chemistry, 0, , .	2.3	3