
Nicola J Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4333229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual sea-level-climatic controls on the stratigraphic distribution of total organic carbon content and macerals in the Permian black shales of southwest Gondwana. Journal of African Earth Sciences, 2022, , 104495.	2.0	1
2	Petrographic composition of coal within the Benue Trough, Nigeria and a consideration of the paleodepositional setting. International Journal of Coal Science and Technology, 2022, 9, .	6.0	4
3	Geology of Coal. , 2021, , 745-761.		3
4	Migmatite-like textures in anthracite: Further evidence for low-grade metamorphic melting and resolidification in high-rank coals. Geoscience Frontiers, 2021, 12, 101122.	8.4	5
5	Control of variability of primary grain assemblages on the stratigraphic differences in diagenetic processes and products in organic-rich sediments. Sedimentary Geology, 2021, 422, 105966.	2.1	8
6	Coal chars recovered from fly ash as promising electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 34679-34688.	7.1	5
7	Macromolecular structural changes in contact metamorphosed inertinite-rich coals from the No. 2 Seam, Witbank Coalfield (South Africa): Insights from petrography, NMR and XRD. International Journal of Coal Geology, 2021, 247, 103857.	5.0	9
8	Geochemistry and organic petrology of the permian whitehill formation, Karoo Basin (RSA) and the Devonian/Carboniferous shale of the Appalachian Basin (USA). International Journal of Coal Geology, 2020, 232, 103612.	5.0	7
9	Assessment of Graphitized Coal Ash Char Concentrates as a Potential Synthetic Graphite Source. Minerals (Basel, Switzerland), 2020, 10, 986.	2.0	16
10	Quantification of U, Th and specific radionuclides in coal from selected coal fired power plants in South Africa. PLoS ONE, 2020, 15, e0229452.	2.5	3
11	Geochemical Evaluation of the Cretaceous Mudrocks and Sandstones (Wackes) in the Southern Bredasdorp Basin, Offshore South Africa: Implications for Hydrocarbon Potential. Minerals (Basel,) Tj ETQq1 1 0.	78 43 014 rg	;BT4/Overloci
12	Significance of coal properties on the caking degree of coarse coal particles mined at Limpopo Province, Republic of South Africa. International Journal of Coal Preparation and Utilization, 2020, 40, 297-319.	2.1	2
13	Influence of organic and inorganic properties of coal-shale on spontaneous combustion liability. International Journal of Mining Science and Technology, 2019, 29, 851-857.	10.3	21
14	Comparative study of a vitrinite-rich and an inertinite-rich Witbank coal (South Africa) using pyrolysis-gas chromatography. International Journal of Coal Science and Technology, 2019, 6, 621-632.	6.0	4
15	Petrology and palynology of select coal samples from the Permian Waterberg Coalfield, South Africa. International Journal of Coal Geology, 2019, 204, 85-101.	5.0	11
16	Notes on the mechanisms of coal metamorphism in the Pennsylvania Anthracite Fields. International Journal of Coal Geology, 2019, 202, 161-170.	5.0	36
17	A Nuclear Magnetic Resonance study: Implications for coal formation in the Witbank Coalfield, South Africa. International Journal of Coal Geology, 2018, 188, 145-155.	5.0	19
18	Geochemical Evaluation of the Permian Ecca Shale in Eastern Cape Province, South Africa: Implications for Shale Gas Potential. Acta Geologica Sinica, 2018, 92, 1193-1217.	1.4	10

#	Article	IF	CITATIONS
19	Parametric effect of adsorption variables on CO <sub align="right">2 adsorption of amine-grafted polyaspartamide composite adsorbent during post-combustion CO<sub align="right">2 capture: a response surface methodology approach. International Journal of Oil, Gas and Coal Technology, 2018, 17, 321.</sub </sub>	0.2	3
20	Using δ15N and δ13C and nitrogen functionalities to support a fire origin for certain inertinite macerals in a No. 4 Seam Upper Witbank coal, South Africa. Organic Geochemistry, 2018, 126, 23-32.	1.8	17
21	Characterization of coal using electron spin resonance: implications for the formation of inertinite macerals in the Witbank Coalfield, South Africa. International Journal of Coal Science and Technology, 2018, 5, 385-398.	6.0	8
22	Rare earth elements in select Main Karoo Basin (South Africa) coal and coal ash samples. International Journal of Coal Geology, 2018, 196, 82-92.	5.0	60
23	Classification of liptinite – ICCP System 1994. International Journal of Coal Geology, 2017, 169, 40-61.	5.0	532
24	CO2 adsorption using water-soluble polyaspartamide. South African Journal of Chemical Engineering, 2017, 23, 139-144.	2.4	7
25	Synthesis and evaluation of carbon nanotubes composite adsorbent for CO2 capture: a comparative study of CO2 adsorption capacity of single-walled and multi-walled carbon nanotubes. International Journal of Coal Science and Technology, 2017, 4, 41-49.	6.0	24
26	Development of a petrographic classification of fly-ash components from coal combustion and co-combustion. (An ICCP Classification System, Fly-Ash Working Group – Commission III.). International Journal of Coal Geology, 2017, 183, 188-203.	5.0	33
27	Effect of the Presence of Water-soluble Amines on the Carbon Dioxide (CO2) Adsorption Capacity of Amine-grafted Poly-succinimide (PSI) Adsorbent During CO2 Capture. Energy Procedia, 2016, 86, 90-105.	1.8	20
28	Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. International Journal of Coal Geology, 2015, 152, 19-46.	5.0	142
29	Coal modeling using Markov Chain and Monte Carlo simulation: Analysis of microlithotype and lithotype succession. Sedimentary Geology, 2015, 329, 1-11.	2.1	3
30	Full-plant Analysis of a PSA CO2 Capture Unit Integrated In Coal-fired Power Plants: Post-and Pre-combustion Scenarios. Energy Procedia, 2014, 63, 2289-2304.	1.8	21
31	A CO2 Capture Technology Using Multi-walled Carbon Nanotubes with Polyaspartamide Surfactant. Energy Procedia, 2014, 63, 2230-2248.	1.8	81
32	Evaluating CO2 Sorption Capacity of a Number of South African (SA) Coal Types: Comparative Study of the Different Coal Properties at Incremental Pressures up to Supercritical Pressures. Energy Procedia, 2014, 51, 299-307.	1.8	5
33	On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 2013, 118, 58-87.	5.0	258
34	The impact of particle size and maceral segregation on char formation in a packed bed combustion unit. Fuel, 2013, 111, 350-356.	6.4	16
35	Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Science of the Total Environment, 2013, 456-457, 95-103.	8.0	88
36	Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire. International Journal of Coal Geology, 2013, 116-117, 63-74.	5.0	115

NICOLA J WAGNER

#	Article	IF	CITATIONS
37	An investigation of Wulantuga coal (Cretaceous, Inner Mongolia) macerals: Paleopathology of faunal and fungal invasions into wood and the recognizable clues for their activity. International Journal of Coal Geology, 2013, 114, 44-53.	5.0	57
38	Maceral types in some Permian southern African coals. International Journal of Coal Geology, 2012, 100, 93-107.	5.0	17
39	Effects of CO2 storage in coal on coal properties. Energy Procedia, 2012, 23, 426-438.	1.8	16
40	Distribution of selected trace elements in density fractionated Waterberg coals from South Africa. International Journal of Coal Geology, 2012, 94, 225-237.	5.0	57
41	Notes on the methods of the combined maceral/microlithotype determination in coal. International Journal of Coal Geology, 2012, 95, 47-53.	5.0	21
42	The petrographic determination of reactivity differences of two South African inertinite-rich lump coals. Journal of Analytical and Applied Pyrolysis, 2012, 93, 139-146.	5.5	23
43	Raman spectroscopy for the analysis of coal: a review. Journal of Raman Spectroscopy, 2011, 42, 123-129.	2.5	230
44	Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part 1. Fuel Processing Technology, 2011, 92, 750-756.	7.2	98
45	Structural analysis of chars generated from South African inertinite coals in a pipe-reactor combustion unit. Fuel Processing Technology, 2011, 92, 743-749.	7.2	40
46	Selected papers from the International Conference on Coal Science and Technology 2009. Fuel Processing Technology, 2011, 92, 717.	7.2	0
47	Changes of pyrite and pyrrhotite in coal upon microwave treatment. Journal of Physics: Conference Series, 2010, 217, 012051.	0.4	4
48	Carbon particle type characterization of the carbon behaviour impacting on a commercial-scale Sasol-Lurgi FBDB gasifier. Fuel, 2009, 88, 771-779.	6.4	20
49	Characterization of unburned carbon present in coarse gasification ash. Fuel, 2008, 87, 683-691.	6.4	80
50	The characterization of weathered discard coals and their behaviour during combustion. Fuel, 2008, 87, 1687-1697.	6.4	17
51	A source apportioned mercury mass balance across a coal-based petrochemical complex. Fuel Processing Technology, 2008, 89, 1351-1357.	7.2	9
52	Coal Gasification. , 2008, , 119-144.		14
53	The Abnormal Condition Analysis used to characterize weathered discard coals. International Journal of Coal Geology, 2007, 72, 177-186.	5.0	13
54	The occurrence of potentially hazardous trace elements in five Highveld coals, South Africa. International Journal of Coal Geology, 2005, 63, 228-246.	5.0	120