
Kirk T. Semple

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4333092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wood ash effects on soil properties and <i>Lactuca sativa</i> growth in soils amended with digestate and poultry litter. Journal of Plant Nutrition, 2023, 46, 1231-1245.	1.9	1
2	Occurrence and Distribution of Polycyclic Aromatic Hydrocarbons and Nitrogen-Containing Polycyclic Aromatic Hydrocarbon Analogues in Soils from the Niger Delta, Nigeria. Polycyclic Aromatic Compounds, 2022, 42, 6290-6302.	2.6	2
3	Determining the bioavailability of benzo(a)pyrene through standardized desorption extraction in a certified reference contaminated soil. Science of the Total Environment, 2022, 803, 150025.	8.0	12
4	Impact of lignocellulosic waste-immobilised white-rot fungi on enhancing the development of 14C-phenanthrene catabolism in soil. Science of the Total Environment, 2022, 811, 152243.	8.0	5
5	Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash. Sustainability, 2022, 14, 3127.	3.2	7
6	Anaerobic co-digestion of cattle rumen content and food waste for biogas production: Establishment of co-digestion ratios and kinetic studies. Bioresource Technology Reports, 2022, 18, 101033.	2.7	8
7	Strategies for the production of a stable blended fertilizer of anaerobic digestates and wood ashes. Nature-based Solutions, 2022, 2, 100014.	3.8	7
8	Valorization of agrowaste digestate via addition of wood ash, acidification, and nitrification. Environmental Technology and Innovation, 2022, 28, 102632.	6.1	5
9	Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. Environmental Pollution, 2022, 308, 119609.	7.5	49
10	Biodegradation of fluorene by the newly isolated marine-derived fungus, Mucor irregularis strain bpo1 using response surface methodology. Ecotoxicology and Environmental Safety, 2021, 208, 111619.	6.0	19
11	Impact of redox-mediators in the degradation of olsalazine by marine-derived fungus, Aspergillus aculeatus strain bpo2: Response surface methodology, laccase stability and kinetics. Ecotoxicology and Environmental Safety, 2021, 208, 111742.	6.0	17
12	Effects of Wood Ash-Based Alkaline Treatment on Nitrogen, Carbon, and Phosphorus Availability in Food Waste and Agro-Industrial Waste Digestates. Waste and Biomass Valorization, 2021, 12, 3355-3370.	3.4	16
13	Impact of sulphuric, hydrochloric, nitric, and lactic acids in the preparation of a blend of agro-industrial digestate and wood ash to produce a novel fertiliser. Journal of Environmental Chemical Engineering, 2021, 9, 105021.	6.7	12
14	Bioaccessibility of 14C-phenanthrene from root amended contaminated soil. International Biodeterioration and Biodegradation, 2021, 158, 105164.	3.9	1
15	Effects of substrate quality on carbon partitioning and microbial community composition in soil from an agricultural grassland. Applied Soil Ecology, 2021, 161, 103881.	4.3	7
16	Temporal changes in the extractability, bioaccessibility and biodegradation of target hydrocarbons in soils from former refinery facilities. International Biodeterioration and Biodegradation, 2021, 160, 105227.	3.9	1
17	Counting the cost of the Niger Delta's largest oil spills: Satellite remote sensing reveals extensive environmental damage with >1million people in the impact zone. Science of the Total Environment, 2021, 775, 145854.	8.0	18
18	Kinetic study of the stabilization of an agro-industrial digestate by adding wood fly ash. Chemical Engineering Journal Advances, 2021, 7, 100127.	5.2	11

#	Article	IF	CITATIONS
19	Baseline PAHs, N-PAHs and 210Pb in Segment Samples from Bodo Creek: Comparison with Bonny Estuary, Niger Delta. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	3
20	Alkaline Wood Ash, Turbulence, and Traps with Excess of Sulfuric Acid Do Not Strip Completely the Ammonia off an Agro-waste Digestate. Edelweiss Chemical Science Journal, 2021, , 19-24.	0.7	8
21	Phosphorus solubility changes following additions of bioenergy wastes to an agricultural soil: Implications for crop availability and environmental mobility. Geoderma, 2021, 401, 115150.	5.1	10
22	Effects of biological pre-treatment of lignocellulosic waste with white-rot fungi on the stimulation of 14C-phenanthrene catabolism in soils. International Biodeterioration and Biodegradation, 2021, 165, 105324.	3.9	10
23	Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environment International, 2021, 156, 106616.	10.0	193
24	Biochar Behaviour and the Influence of Soil Microbial Community. Plant in Challenging Environments, 2021, , 181-213.	0.4	0
25	Analysis of polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives in soils of an industrial heritage city of Australia. Science of the Total Environment, 2020, 699, 134303.	8.0	46
26	The Nutritional Effects of Digested and Undigested Organic Wastes Combined with Wood Ash Amendments on Carrot Plants. Journal of Soil Science and Plant Nutrition, 2020, 20, 460-472.	3.4	11
27	Why Biodegradable Chemicals Persist in the Environment? A Look at Bioavailability. Handbook of Environmental Chemistry, 2020, , 243-265.	0.4	7
28	Quantitative assessment data of PAHs and N-PAHs in core sediments from the Niger Delta, Nigeria. Data in Brief, 2020, 33, 106484.	1.0	7
29	Quantitative biomonitoring of polycyclic aromatic compounds (PACs) using the Sydney rock oyster (Saccostrea glomerata). Science of the Total Environment, 2020, 742, 140497.	8.0	3
30	Risk assessment of PAHs and N-PAH analogues in sediment cores from the Niger Delta. Marine Pollution Bulletin, 2020, 161, 111684.	5.0	25
31	The impact of enhanced and non-enhanced biochars on the catabolism of Â14C-phenanthrene in soil. Environmental Technology and Innovation, 2020, 20, 101146.	6.1	5
32	Bioavailability and Bioaccessibility of Hydrophobic Organic Contaminants in Soil and Associated Desorption-Based Measurements. Handbook of Environmental Chemistry, 2020, , 293-350.	0.4	5
33	Bioavailability of polycyclic aromatic compounds (PACs) to the Sydney rock oyster (Saccostrea) Tj ETQq1 1 0.7 Total Environment, 2020, 736, 139574.	84314 rgB ⁻ 8.0	[/Overlock] 10
34	Impact of organic amendments on the development of 14C-phenanthrene catabolism in soil. International Biodeterioration and Biodegradation, 2020, 151, 104991.	3.9	10
35	Impact of digestate and its fractions on mineralization of 14C-phenanthrene in aged soil. Ecotoxicology and Environmental Safety, 2020, 195, 110482.	6.0	4
36	The effect of organic acids on the behaviour and biodegradation of 14C-phenanthrene in contaminated soil. Soil Biology and Biochemistry, 2020, 143, 107722.	8.8	10

#	Article	IF	CITATIONS
37	Editorial: Resource Recovery From Waste. Frontiers in Environmental Science, 2020, 8, .	3.3	10
38	Co-fermentation of whey permeates and cattle slurry using a partitioned up-flow anaerobic digestion tank. Energy, 2019, 185, 567-572.	8.8	4
39	River network delineation from Sentinel-1 SAR data. International Journal of Applied Earth Observation and Geoinformation, 2019, 83, 101910.	2.8	13
40	Influence of pH, electrical conductivity and ageing on the extractability of benzo[a]pyrene in two contrasting soils. Science of the Total Environment, 2019, 690, 647-653.	8.0	6
41	Bioaccumulation of benzo[a]pyrene nonextractable residues in soil by Eisenia fetida and associated background-level sublethal genotoxicity (DNA single-strand breaks). Science of the Total Environment, 2019, 691, 605-610.	8.0	12
42	In vitro gastrointestinal mobilization and oral bioaccessibility of PAHs in contrasting soils and associated cancer risks: Focus on PAH nonextractable residues. Environment International, 2019, 133, 105186.	10.0	18
43	Soil contamination in China: Current priorities, defining background levels and standards for heavy metals. Journal of Environmental Management, 2019, 251, 109512.	7.8	90
44	The effect of acidogenic and methanogenic conditions on the availability and stability of carbon, nitrogen and phosphorus in a digestate. Journal of Environmental Chemical Engineering, 2019, 7, 103138.	6.7	14
45	Extremely small amounts of B[a]P residues remobilised in long-term contaminated soils: A strong case for greater focus on readily available and not total-extractable fractions in risk assessment. Journal of Hazardous Materials, 2019, 368, 72-80.	12.4	10
46	Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environment International, 2019, 123, 543-557.	10.0	245
47	Spectrochemical determination of unique bacterial responses following long-term low-level exposure to antimicrobials. Analytical Methods, 2018, 10, 1602-1611.	2.7	7
48	Spectrochemical analyses of growth phase-related bacterial responses to low (environmentally-relevant) concentrations of tetracycline and nanoparticulate silver. Analyst, The, 2018, 143, 768-776.	3.5	18
49	Mineralisation of 14 C-phenanthrene in PAH-diesel contaminated soil: Impact of Sorghum bicolor and Medicago sativa mono- or mixed culture. Applied Soil Ecology, 2018, 125, 46-55.	4.3	4
50	Impact of single and binary mixtures of phenanthrene and N-PAHs on microbial utilization of 14C-glucose in soil. Soil Biology and Biochemistry, 2018, 120, 222-229.	8.8	4
51	Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil. Ecotoxicology and Environmental Safety, 2018, 147, 594-601.	6.0	6
52	Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. Science of the Total Environment, 2018, 613-614, 1140-1153.	8.0	66
53	Optimisation of XAD extraction methodology for the assessment of biodegradation potential ofÂ14C-phenanthrene in soil. Environmental Technology and Innovation, 2018, 9, 140-150.	6.1	1
54	Enhancement of 14 C-phenanthrene mineralisation in the presence of plant-root biomass in PAH-NAPL amended soil. International Biodeterioration and Biodegradation, 2018, 126, 78-85.	3.9	7

#	Article	IF	CITATIONS
55	Quantifying the exposure of humans and the environment to oil pollution in the Niger Delta using advanced geostatistical techniques. Environment International, 2018, 111, 32-42.	10.0	46
56	Enhanced Recovery of Nonextractable Benzo[a]pyrene Residues in Contrasting Soils Using Exhaustive Methanolic and Nonmethanolic Alkaline Treatments. Analytical Chemistry, 2018, 90, 13104-13111.	6.5	8
57	Time-Dependent Remobilization of Nonextractable Benzo[a]pyrene Residues in Contrasting Soils: Effects of Aging, Spiked Concentration, and Soil Properties. Environmental Science & Technology, 2018, 52, 12295-12305.	10.0	26
58	Comparison of Single- and Sequential-Solvent Extractions of Total Extractable Benzo[<i>a</i>]pyrene Fractions in Contrasting Soils. Analytical Chemistry, 2018, 90, 11703-11709.	6.5	14
59	Pyrogenic carbon in Australian soils. Science of the Total Environment, 2017, 586, 849-857.	8.0	13
60	Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere, 2017, 180, 564-573.	8.2	60
61	Effects of Single, Binary and Quinary Mixtures of Phenanthrene and Its N-PAHs on Eisenia fetida in Soil. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	9
62	The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Management, 2017, 61, 236-249.	7.4	290
63	Pyrogenic carbon and its role in contaminant immobilization in soils. Critical Reviews in Environmental Science and Technology, 2017, 47, 795-876.	12.8	72
64	Measurement of soil lead bioavailability and influence of soil types and properties: A review. Chemosphere, 2017, 184, 27-42.	8.2	55
65	Effects of pre-exposure on the indigenous biodegradation of 14 C-phenanthrene in Antarctic soils. International Biodeterioration and Biodegradation, 2017, 125, 189-199.	3.9	5
66	Indigenous14C-phenanthrene biodegradation in "pristine―woodland and grassland soils from Norway and the United Kingdom. Environmental Sciences: Processes and Impacts, 2017, 19, 1437-1444.	3.5	5
67	Infrared Spectroscopy Coupled with a Dispersion Model for Quantifying the Real-Time Dynamics of Kanamycin Resistance in Artificial Microbiota. Analytical Chemistry, 2017, 89, 9814-9821.	6.5	30
68	Thermal stability of biochar and its effects on cadmium sorption capacity. Bioresource Technology, 2017, 246, 48-56.	9.6	69
69	Assessment of PAH contaminated land: Implementing a risk-based approach. Environmental Technology and Innovation, 2017, 8, 84-95.	6.1	11
70	Residual hydrophobic organic contaminants in soil: Are they a barrier to risk-based approaches for managing contaminated land?. Environment International, 2017, 98, 18-34.	10.0	35
71	Measurement of Hydrocarbon Bioavailability in Soil. Springer Protocols, 2016, , 231-246.	0.3	1
72	Using publicly available data, a physiologically-based pharmacokinetic model and Bayesian simulation to improve arsenic non-cancer dose-response. Environment International, 2016, 92-93, 239-246.	10.0	16

#	Article	IF	CITATIONS
73	A meta-analysis to correlate lead bioavailability and bioaccessibility and predict lead bioavailability. Environment International, 2016, 92-93, 139-145.	10.0	20
74	Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresource Technology, 2016, 216, 142-149.	9.6	182
75	Buffered cyclodextrin extraction of <mmi:math <br="" xmins:mmi="http://www.w3.org/1998/Wath/Wath/WathWL">altimg="si9.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow /><mml:mrow><mml:mn>14</mml:mn></mml:mrow></mml:mrow </mml:msup><mml:mstyle mathvariant="normal"><mml:mi>C</mml:mi>-phenanthrene from black carbon amended soil. Environmental Technology and Immovation, 2016, 6, 177-184.</mml:mstyle </mmi:math>	6.1	10
76	Impact of two contrasting biochars on the bioaccessibility of 14C-naphthalene in soil. Environmental Technology and Innovation, 2016, 6, 80-93.	6.1	14
77	Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation. Chemosphere, 2016, 161, 300-307.	8.2	94
78	Comparison of oral bioavailability of benzo[a]pyrene in soils using rat and swine and the implications for human health risk assessment. Environment International, 2016, 94, 95-102.	10.0	22
79	An assessment of the impacts of pesticide use on the environment and health of rice farmers in Sierra Leone. Environment International, 2016, 94, 458-466.	10.0	85
80	Effects of phenanthrene and its nitrogen-heterocyclic analogues aged in soil on the earthworm Eisenia fetida. Applied Soil Ecology, 2016, 105, 151-159.	4.3	28
81	Assessment of the effects of phenanthrene and its nitrogen heterocyclic analogues on microbial activity in soil. SpringerPlus, 2016, 5, 279.	1.2	15
82	Biodegradation of Phenanthrene-Nitrogen-Containing Analogues in Soil. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	17
83	Bioavailability of Persistent Organic Pollutants in Soils. Comprehensive Analytical Chemistry, 2015, , 493-512.	1.3	4
84	Carbon nanomaterials in clean and contaminated soils: environmental implications and applications. Soil, 2015, 1, 1-21.	4.9	24
85	The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil. Environmental Sciences: Processes and Impacts, 2015, 17, 1302-1310.	3.5	10
86	Fate and behaviour of nitrogen-containing polycyclic aromatic hydrocarbons in soil. Environmental Technology and Innovation, 2015, 3, 108-120.	6.1	33
87	Interactions of multiwalled carbon nanotubes with algal cells: Quantification of association, visualization of uptake, and measurement of alterations in the composition of cells. Environmental Pollution, 2015, 196, 431-439.	7.5	58
88	The effect of substrate to inoculum ratios on the anaerobic digestion of human faecal material. Environmental Technology and Innovation, 2015, 3, 121-129.	6.1	21
89	Impact of carbon nanomaterials on microbial activity in soil. Soil Biology and Biochemistry, 2015, 86, 172-180.	8.8	46
90	Effect of ageing on benzo[a]pyrene extractability in contrasting soils. Journal of Hazardous Materials, 2015, 296, 175-184.	12.4	37

#	Article	IF	CITATIONS
91	Phytotoxicity of Phenanthrene and Its Nitrogen Polycyclic Aromatic Hydrocarbon Analogues in Ageing Soil. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	11
92	Impact of activated carbon on the catabolism of 14C-phenanthrene in soil. Environmental Sciences: Processes and Impacts, 2015, 17, 1173-1181.	3.5	8
93	High solid anaerobic digestion: Operational challenges and possibilities. Environmental Technology and Innovation, 2015, 4, 268-284.	6.1	94
94	From Bioavailability Science to Regulation of Organic Chemicals. Environmental Science & Technology, 2015, 49, 10255-10264.	10.0	171
95	Towards bioavailability-based soil criteria: past, present and future perspectives. Environmental Science and Pollution Research, 2015, 22, 8779-8785.	5.3	26
96	Harmonising conflicts between science, regulation, perception and environmental impact: The case of soil conditioners from bioenergy. Environment International, 2015, 75, 52-67.	10.0	53
97	Influence of Wood Biochar on Phenanthrene Catabolism in Soils. Environments - MDPI, 2014, 1, 60-74.	3.3	10
98	Impact of Different Types of Activated Carbon on the Bioaccessibility of 14C-phenanthrene in Sterile and Non-Sterile Soils. Environments - MDPI, 2014, 1, 137-156.	3.3	5
99	The impact of biochar on the bioaccessibility of ¹⁴ C-phenanthrene in aged soil. Environmental Sciences: Processes and Impacts, 2014, 16, 2635-2643.	3.5	31
100	Isolation and characterisation of azoxystrobin degrading bacteria from soil. Chemosphere, 2014, 95, 370-378.	8.2	43
101	Mid-infrared spectroscopic assessment of nanotoxicity in Gram-negative vs. Gram-positive bacteria. Analyst, The, 2014, 139, 896-905.	3.5	15
102	The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics. Journal of Hazardous Materials, 2014, 278, 336-342.	12.4	15
103	Polycyclic Aromatic Hydrocarbon Degradation of Phytoplankton-Associated Arenibacter spp. and Description of Arenibacter algicola sp. nov., an Aromatic Hydrocarbon-Degrading Bacterium. Applied and Environmental Microbiology, 2014, 80, 618-628.	3.1	81
104	Effects of ageing and soil properties on the oral bioavailability of benzo[a]pyrene using a swine model. Environment International, 2014, 70, 192-202.	10.0	67
105	The variability of standard artificial soils: Behaviour, extractability and bioavailability of organic pollutants. Journal of Hazardous Materials, 2014, 264, 514-520.	12.4	15
106	Resistance and resilience responses of a range of soil eukaryote and bacterial taxa to fungicide application. Chemosphere, 2014, 112, 194-202.	8.2	20
107	Impact of Zn and Cu on the development of phenanthrene catabolism in soil. Environmental Monitoring and Assessment, 2013, 185, 10039-10047.	2.7	9
108	Impact of Al and Fe on the development of phenanthrene catabolism in soil. Journal of Soils and Sediments, 2013, 13, 1589-1599.	3.0	8

#	Article	IF	CITATIONS
109	Impact of black carbon on the bioaccessibility of organic contaminants in soil. Journal of Hazardous Materials, 2013, 261, 808-816.	12.4	105
110	An NMR study of porous rock and biochar containing organic material. Microporous and Mesoporous Materials, 2013, 178, 94-98.	4.4	50
111	Impact of Zn, Cu, Al and Fe on the partitioning and bioaccessibility of 14C-phenanthrene in soil. Environmental Pollution, 2013, 180, 180-189.	7.5	17
112	Chemical measures of bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application. Journal of Hazardous Materials, 2013, 261, 687-700.	12.4	114
113	Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil. Environmental Pollution, 2013, 173, 231-237.	7.5	17
114	Impact of zinc-copper mixtures on the development of phenanthrene catabolism in soil. International Biodeterioration and Biodegradation, 2013, 85, 228-236.	3.9	11
115	Polycyclovorans algicola gen. nov., sp. nov., an Aromatic-Hydrocarbon-Degrading Marine Bacterium Found Associated with Laboratory Cultures of Marine Phytoplankton. Applied and Environmental Microbiology, 2013, 79, 205-214.	3.1	113
116	Impact of Biochar on Organic Contaminants in Soil: A Tool for Mitigating Risk?. Agronomy, 2013, 3, 349-375.	3.0	82
117	Algiphilus aromaticivorans gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from a culture of the marine dinoflagellate Lingulodinium polyedrum, and proposal of Algiphilaceae fam. nov International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2743-2749.	1.7	70
118	Mycelia Promote Active Transport and Spatial Dispersion of Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 2012, 46, 5463-5470.	10.0	83
119	Influence of Activated Charcoal on Desorption Kinetics and Biodegradation of Phenanthrene in Soil. Environmental Science & Technology, 2012, 46, 12445-12451.	10.0	63
120	Fate and bioavailability of 14C-pyrene and 14C-lindane in sterile natural and artificial soils and the influence of aging. Environmental Pollution, 2012, 171, 93-98.	7.5	15
121	Mechanistic insights into nanotoxicity determined by synchrotron radiation-based Fourier-transform infrared imaging and multivariate analysis. Environment International, 2012, 50, 56-65.	10.0	23
122	Effects of soil compaction, rain exposure and their interaction on soil carbon dioxide emission. Earth Surface Processes and Landforms, 2012, 37, 994-999.	2.5	32
123	Biodegradation of phenanthrene by indigenous microorganisms in soils from Livingstone Island, Antarctica. FEMS Microbiology Letters, 2012, 329, 69-77.	1.8	25
124	Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere, 2012, 88, 77-83.	8.2	99
125	Concentration-dependent effects of carbon nanoparticles in gram-negative bacteria determined by infrared spectroscopy with multivariate analysis. Environmental Pollution, 2012, 163, 226-234.	7.5	59
126	Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities. Environmental Pollution, 2011, 159, 515-523.	7.5	37

#	Article	IF	CITATIONS
127	The formation of bound residues of diazinon in four UK soils: Implications for risk assessment. Environmental Pollution, 2011, 159, 776-781.	7.5	16
128	Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil. Environmental Pollution, 2011, 159, 706-715.	7.5	63
129	The biodegradation of cable oil components: Impact of oil concentration, nutrient addition and bioaugmentation. Environmental Pollution, 2011, 159, 3777-3783.	7.5	14
130	The extractability and mineralisation of cypermethrin aged in four UK soils. Chemosphere, 2011, 82, 187-192.	8.2	29
131	The effect of soil:water ratios on the induction of isoproturon, cypermethrin and diazinon mineralisation. Chemosphere, 2011, 82, 163-168.	8.2	13
132	Stable Isotope Probing of an Algal Bloom To Identify Uncultivated Members of the Rhodobacteraceae Associated with Low-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation. Applied and Environmental Microbiology, 2011, 77, 7856-7860.	3.1	70
133	Linking desorption kinetics to phenanthrene biodegradation in soil. Environmental Pollution, 2010, 158, 1348-1353.	7.5	74
134	When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environmental Pollution, 2010, 158, 3032-3040.	7.5	73
135	Biodegradation of PAHs in soil: Influence of chemical structure, concentration and multiple amendment. Environmental Pollution, 2010, 158, 3411-3420.	7.5	83
136	Multimedia fate of petroleum hydrocarbons in the soil: Oil matrix of constructed biopiles. Chemosphere, 2010, 81, 1454-1462.	8.2	51
137	Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils. Chemosphere, 2010, 79, 463-469.	8.2	60
138	Past, Present, and Future Controls on Levels of Persistent Organic Pollutants in the Global Environment. Environmental Science & Technology, 2010, 44, 6526-6531.	10.0	214
139	Measurement of Bioaccessibility of Organic Pollutants in Soil. Methods in Molecular Biology, 2010, 599, 1-14.	0.9	5
140	Role of Clay and Organic Matter in the Biodegradation of Organics in Soil. , 2010, , 367-384.		4
141	Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil microorganisms. Environmental Pollution, 2009, 157, 86-94.	7.5	14
142	Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environmental Pollution, 2009, 157, 1643-1648.	7.5	38
143	Influence of hydroxypropyl-β-cyclodextrin on the biodegradation of 14C-phenanthrene and 14C-hexadecane in soil. Environmental Pollution, 2009, 157, 2678-2683.	7.5	31
144	As-resistance in laboratory-reared F1, F2 and F3 generation offspring of the earthworm Lumbricus rubellus inhabiting an As-contaminated mine soil. Environmental Pollution, 2009, 157, 3114-3119.	7.5	32

#	Article	IF	CITATIONS
145	Predicting the biodegradation of target hydrocarbons in the presence of mixed contaminants in soil. Chemosphere, 2009, 74, 563-567.	8.2	22
146	The effect of agitation on the biodegradation of hydrocarbon contaminants in soil slurries. Chemosphere, 2009, 77, 123-128.	8.2	5
147	Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil. Environmental Toxicology and Chemistry, 2008, 27, 1488-1495.	4.3	37
148	Chapter 3 Bioavailability: Definition, assessment and implications for risk assessment. Developments in Soil Science, 2008, , 39-51.	0.5	32
149	Fate and behaviour of phenanthrene in the natural and artificial soils. Environmental Pollution, 2008, 152, 468-475.	7.5	31
150	Development of phenanthrene catabolism in natural and artificial soils. Environmental Pollution, 2008, 152, 424-430.	7.5	18
151	The impact of synthetic pyrethroid and organophosphate sheep dip formulations on microbial activity in soil. Environmental Pollution, 2008, 153, 207-214.	7.5	13
152	Linking chemical extraction to microbial degradation of 14C-hexadecane in soil. Environmental Pollution, 2008, 156, 474-481.	7.5	32
153	Assessing biodegradation potential of PAHs in complex multi-contaminant matrices. Environmental Pollution, 2008, 156, 1041-1045.	7.5	34
154	Using supercritical fluid extraction to measure the desorption and bioaccessibility of phenanthrene in soils. Environmental Pollution, 2008, 156, 664-670.	7.5	14
155	Fugacity modelling to predict the distribution of organic contaminants in the soil:oil matrix of constructed biopiles. Chemosphere, 2008, 71, 1432-1439.	8.2	30
156	Development of an Analytical Procedure for Weathered Hydrocarbon Contaminated Soils within a UK Risk-Based Framework. Analytical Chemistry, 2008, 80, 7090-7096.	6.5	53
157	Impact of Black Carbon in the Extraction and Mineralization of Phenanthrene in Soil. Environmental Science & Technology, 2008, 42, 740-745.	10.0	172
158	Impact of electrokinetic remediation on microbial communities within PCP contaminated soil. Environmental Pollution, 2007, 146, 139-146.	7.5	99
159	Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-β-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS). Environmental Pollution, 2007, 148, 176-181.	7.5	26
160	Microbial interactions with organic contaminants in soil: Definitions, processes and measurement. Environmental Pollution, 2007, 150, 166-176.	7.5	255
161	Cyclodextrin Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons and Phenols in Contaminated Soil Slurries. Environmental Science & Technology, 2007, 41, 5498-5504.	10.0	82
162	Development of microbial degradation of cypermethrin and diazinon in organically and conventionally managed soils. Journal of Environmental Monitoring, 2007, 9, 510.	2.1	28

#	Article	IF	CITATIONS
163	Enantioselective Degradation of Organochlorine Pesticides in Background Soils:Â Variability in Field and Laboratory Studies. Environmental Science & Technology, 2007, 41, 4965-4971.	10.0	41
164	Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. Journal of Environmental Monitoring, 2007, 9, 516.	2.1	50
165	Sources, fate, behaviour and effects of organic chemicals at the regional and global scale. Journal of Environmental Monitoring, 2007, 9, 500.	2.1	2
166	Weathered Hydrocarbon Wastes: A Risk Management Primer. Critical Reviews in Environmental Science and Technology, 2007, 37, 199-232.	12.8	77
167	Prediction of Microbial Accessibility of Carbonâ€14â€Phenanthrene in Soil in the Presence of Pyrene or Benzo[a]pyrene using an Aqueous Cyclodextrin Extraction Technique. Journal of Environmental Quality, 2007, 36, 1385-1391.	2.0	20
168	Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. Journal of Applied Microbiology, 2007, 102, 1239-1253.	3.1	183
169	Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere ofPopulus tremula. FEMS Microbiology Letters, 2007, 268, 34-39.	1.8	90
170	Biodegradation of 2,4-dichlorophenol in the presence of volatile organic compounds in soils under different vegetation types. FEMS Microbiology Letters, 2007, 269, 323-330.	1.8	26
171	Importance of chemical structure on the development of hydrocarbon catabolism in soil. FEMS Microbiology Letters, 2007, 272, 120-126.	1.8	22
172	Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environmental Pollution, 2006, 144, 562-571.	7.5	75
173	Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil?. Environmental Pollution, 2006, 140, 164-172.	7.5	73
174	The influence of single and multiple applications of pyrene on the evolution of pyrene catabolism in soil. Environmental Pollution, 2006, 139, 455-460.	7.5	40
175	Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environmental Pollution, 2006, 144, 345-354.	7.5	64
176	Degradation of phenol and its methylated homologues by Ochromonas danica. FEMS Microbiology Letters, 2006, 152, 133-139.	1.8	43
177	Biological tools for the assessment of contaminated land: applied soil ecotoxicology. Soil Use and Management, 2005, 21, 487-499.	4.9	21
178	Behaviour and assessment of bioavailability of organic contaminants in soil: relevance for risk assessment and remediation. Soil Use and Management, 2005, 21, 475-486.	4.9	86
179	PREDICTION OF POLYCYCLIC AROMATIC HYDROCARBON BIODEGRADATION IN CONTAMINATED SOILS USING AN AQUEOUS HYDROXYPROPYL-1 ² -CYCLODEXTRIN EXTRACTION TECHNIQUE. Environmental Toxicology and Chemistry, 2005, 24, 1325.	4.3	100
180	EFFECT OF CYCLODEXTRIN AND TRANSFORMER OIL AMENDMENTS ON THE CHEMICAL EXTRACTABILITY OF AGED [14C]POLYCHLORINATED BIPHENYL AND [14C]POLYCYCLIC AROMATIC HYDROCARBON RESIDUES IN SOIL. Environmental Toxicology and Chemistry, 2005, 24, 2138.	4.3	7

#	Article	IF	CITATIONS
181	Ligand Arsenic Complexation and Immunoperoxidase Detection of Metallothionein in the EarthwormLumbricus rubellusInhabiting Arsenic-Rich Soil. Environmental Science & Technology, 2005, 39, 2042-2048.	10.0	44
182	Linking Catabolism to Cyclodextrin Extractability:Â Determination of the Microbial Availability of PAHs in Soil. Environmental Science & Technology, 2005, 39, 8858-8864.	10.0	83
183	Distribution of Aged14Câ^'PCB and14Câ^'PAH Residues in Particle-Size and Humic Fractions of an Agricultural Soil. Environmental Science & Technology, 2005, 39, 6575-6583.	10.0	75
184	Long-Term Fate of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in an Agricultural Soil. Environmental Science & Technology, 2005, 39, 3663-3670.	10.0	101
185	Formation and release of non-extractable 14C-Dicamba residues in soil under sterile and non-sterile regimes. Environmental Pollution, 2005, 133, 17-24.	7.5	33
186	Introductory remarks to the Special Issue. Environmental Pollution, 2005, 133, 1-2.	7.5	12
187	Dedication to the memory of Professor Allan Walker 1994–2004. Environmental Pollution, 2005, 133, 3.	7.5	0
188	Influence of plants on the chemical extractability and biodegradability of 2,4-dichlorophenol in soil. Environmental Pollution, 2005, 133, 53-62.	7.5	25
189	Formation of non-extractable pesticide residues: observations on compound differences, measurement and regulatory issues. Environmental Pollution, 2005, 133, 25-34.	7.5	91
190	Prediction of [3-14C]phenyldodecane biodegradation in cable insulating oil-spiked soil using selected extraction techniques. Environmental Pollution, 2005, 138, 316-323.	7.5	20
191	A biomarker model of sublethal genotoxicity (DNA single-strand breaks and adducts) using the sentinel organism Aporrectodea longa in spiked soil. Environmental Pollution, 2005, 138, 307-315.	7.5	39
192	INFLUENCE OF HYDROXYPROPYL-Î ² -CYCLODEXTRIN ON THE EXTRACTION AND BIODEGRADATION OF PHENANTHRENE IN SOIL. Environmental Toxicology and Chemistry, 2004, 23, 550.	4.3	44
193	Effects of organophosphate and synthetic pyrethroid sheep dip formulations on protozoan survival and bacterial survival and growth. FEMS Microbiology Ecology, 2004, 47, 121-127.	2.7	17
194	Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil. FEMS Microbiology Letters, 2004, 241, 215-220.	1.8	35
195	Peer Reviewed: Defining Bioavailability and Bioaccessibility of Contaminated Soil and Sediment is Complicated. Environmental Science & Technology, 2004, 38, 228A-231A.	10.0	558
196	Single-well reactive tracer test and stable isotope analysis for determination of microbial activity in a fast hydrocarbon-contaminated aquifer. Environmental Pollution, 2004, 129, 321-330.	7.5	20
197	INHERITED RESISTANCE TO ARSENATE TOXICITY IN TWO POPULATIONS OF LUMBRICUS RUBELLUS. Environmental Toxicology and Chemistry, 2003, 22, 2344.	4.3	39
198	Sequential extraction of low concentrations of pyrene and formation of non-extractable residues in sterile and non-sterile soils. Soil Biology and Biochemistry, 2003, 35, 1443-1450.	8.8	82

#	Article	IF	CITATIONS
199	Arsenic speciation in the earthworms <i>Lumbricus rubellus</i> and <i>Dendrodrilus rubidus</i> . Environmental Toxicology and Chemistry, 2003, 22, 1302-1308.	4.3	37
200	The effect of soil:water ratios on the mineralisation of phenanthrene:LNAPL mixtures in soil. FEMS Microbiology Letters, 2003, 220, 29-33.	1.8	61
201	The development of phenanthrene catabolism in soil amended with transformer oil. FEMS Microbiology Letters, 2003, 228, 217-223.	1.8	29
202	Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European Journal of Soil Science, 2003, 54, 809-818.	3.9	484
203	Interactions between earthworms and arsenic in the soil environment: a review. Environmental Pollution, 2003, 124, 361-373.	7.5	124
204	Assessment of spiking procedures for the introduction of a phenanthrene-LNAPL mixture into field-wet soil. Environmental Pollution, 2003, 126, 399-406.	7.5	102
205	Peer Reviewed: Nonextractable Pesticide Residues in Soil. Environmental Science & Technology, 2003, 37, 138A-144A.	10.0	38
206	ARSENIC SPECIATION IN THE EARTHWORMS LUMBRICUS RUBELLUS AND DENDRODRILUS RUBIDUS. Environmental Toxicology and Chemistry, 2003, 22, 1302.	4.3	5
207	Arsenic-speciation in arsenate-resistant and non-resistant populations of the earthworm, Lumbricus rubellus. Journal of Environmental Monitoring, 2002, 4, 603-608.	2.1	70
208	The potential for anaerobic mineralisation of hydrocarbon constituents of oily drill cuttings from the North Sea seabed. Journal of Environmental Monitoring, 2002, 4, 553.	2.1	14
209	Temporal changes in earthworm availability and extractability of polycyclic aromatic hydrocarbons in soil. Soil Biology and Biochemistry, 2002, 34, 1363-1370.	8.8	67
210	Yellow earthworms: distinctive pigmentation associated with arsenic- and copper-tolerance in Lumbricus rubellus. Soil Biology and Biochemistry, 2002, 34, 1833-1838.	8.8	25
211	Induction of PAH-catabolism in mushroom compost and its use in the biodegradation of soil-associated phenanthrene. Environmental Pollution, 2002, 118, 65-73.	7.5	57
212	The adaptation of two similar soils to pyrene catabolism. Environmental Pollution, 2002, 119, 357-364.	7.5	69
213	Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution, 2001, 112, 269-283.	7.5	413
214	Survival and behaviour of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from arsenate-contaminated and non-contaminated sites. Soil Biology and Biochemistry, 2001, 33, 1239-1244.	8.8	101
215	Bioavailability of Nonextractable (Bound) Pesticide Residues to Earthworms. Environmental Science & Technology, 2001, 35, 501-507.	10.0	144
216	Resistance to copper toxicity in populations of the earthworms <i>Lumbricus rubellus</i> and <i>Dendrodrilus rubidus</i> from contaminated mine wastes. Environmental Toxicology and Chemistry, 2001, 20, 2336-2341.	4.3	61

#	Article	lF	CITATIONS
217	A simple14C-respirometric method for assessing microbial catabolic potential and contaminant bioavailability. FEMS Microbiology Letters, 2001, 196, 141-146.	1.8	119
218	The role of microorganisms in ecological risk assessment of hydrophobic organic contaminants in soils. Advances in Applied Microbiology, 2001, 48, 171-212.	2.4	20
219	RESISTANCE TO COPPER TOXICITY IN POPULATIONS OF THE EARTHWORMS LUMBRICUS RUBELLUS AND DENDRODRILUS RUBIDUS FROM CONTAMINATED MINE WASTES. Environmental Toxicology and Chemistry, 2001, 20, 2336.	4.3	28
220	Impact of electrical cable insulating oil on the mineralisation of [1-14C]glucose in soil. FEMS Microbiology Letters, 2000, 182, 367-373.	1.8	7
221	Impact of synthetic pyrethroid-sheep dip on the indigenous microflora of animal slurries. FEMS Microbiology Letters, 2000, 190, 255-260.	1.8	7
222	Introductory remarks to the Special Issue. Environmental Pollution, 2000, 108, 1-2.	7.5	6
223	Bound pesticide residues in soils: a review. Environmental Pollution, 2000, 108, 3-14.	7.5	608
224	Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environmental Pollution, 2000, 108, 103-112.	7.5	510
225	Nonexhaustive Cyclodextrin-Based Extraction Technique for the Evaluation of PAH Bioavailability. Environmental Science & Technology, 2000, 34, 3174-3179.	10.0	343
226	Influence of Contact Time on Extractability and Degradation of Pyrene in Soils. Environmental Science & Technology, 2000, 34, 4952-4957.	10.0	105
227	Impact of synthetic pyrethroid-sheep dip on the indigenous microflora of animal slurries. FEMS Microbiology Letters, 2000, 190, 255-260.	1.8	3
228	Biodegradation of aromatic compounds by microalgae. FEMS Microbiology Letters, 1999, 170, 291-300.	1.8	231
229	Resistance to arsenic-toxicity in a population of the earthworm Lumbricus rubellus. Soil Biology and Biochemistry, 1999, 31, 1963-1967.	8.8	105
230	Methods for the analysis of PCBs in human food, faeces and serum. Chemosphere, 1999, 39, 1467-1476.	8.2	17
231	Biodegradation of aromatic compounds by microalgae. FEMS Microbiology Letters, 1999, 170, 291-300.	1.8	24
232	Factors affecting the mineralization of [U-14C]benzene in spent mushroom substrate. FEMS Microbiology Letters, 1998, 164, 317-321.	1.8	24
233	Feasibility of using prokaryote biosensors to assess acute toxicity of polycyclic aromatic hydrocarbons. FEMS Microbiology Letters, 1998, 169, 227-233.	1.8	43
234	Heterotrophic growth on phenolic mixtures by Ochromonas danica. Research in Microbiology, 1998, 149, 65-72.	2.1	23

#	Article	IF	CITATIONS
235	Evaluation of Spiking Procedures for the Introduction of Poorly Water Soluble Contaminants into Soil. Environmental Science & Technology, 1998, 32, 3224-3227.	10.0	67
236	Feasibility of using prokaryote biosensors to assess acute toxicity of polycyclic aromatic hydrocarbons. FEMS Microbiology Letters, 1998, 169, 227-233.	1.8	2
237	Biodegradation of phenols by a eukaryotic alga. Research in Microbiology, 1997, 148, 365-367.	2.1	14
238	Enhanced mineralization of UL-14C-pentachlorophenol by mushroom composts. Research in Microbiology, 1997, 148, 795-798.	2.1	16
239	Degradation of phenol and its methylated homologues by Ochromonas danica. FEMS Microbiology Letters, 1997, 152, 133-139.	1.8	1
240	Biodegradation of phenols by the alga Ochromonas danica. Applied and Environmental Microbiology, 1996, 62, 1265-1273.	3.1	135
241	Metabolism of phenols byOchromonas danica. FEMS Microbiology Letters, 1995, 133, 253-257.	1.8	22
242	Respiration Responses of Earthworm to Soil Amended with Phenanthrene and the Nitrogen Heterocyclic Analogues. Soil and Sediment Contamination, 0, , 1-12.	1.9	1