Christian Smit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4332490/publications.pdf Version: 2024-02-01

CHDISTIAN SMIT

#	Article	IF	CITATIONS
1	Recreation and hunting differentially affect deer behaviour and sapling performance. Oikos, 2022, 2022, .	2.7	12
2	LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .	2.2	4
3	Large herbivores facilitate a dominant grassland forb via multiple indirect effects. Ecology, 2022, 103, e3635.	3.2	10
4	With a little help from my friends: physiological integration facilitates invasion of wetland grass Elymus athericus into flooded soils. Oikos, 2021, 130, 431-439.	2.7	8
5	Linking Bacterial Communities Associated with the Environment and the Ecosystem Engineer Orchestia gammarellus at Contrasting Salt Marsh Elevations. Microbial Ecology, 2021, 82, 537-548.	2.8	3
6	Impediments affect deer foraging decisions and sapling performance. Forest Ecology and Management, 2021, 482, 118838.	3.2	3
7	Longâ€term crossâ€scale comparison of grazing and mowing on plant diversity and community composition in a saltâ€marsh system. Journal of Ecology, 2021, 109, 3737-3747.	4.0	6
8	Small herbivores and abiotic heterogeneity promote trait variation of a saltmarsh plant in local communities. PeerJ, 2021, 9, e12633.	2.0	0
9	Salt Marsh Elevation Drives Root Microbial Composition of the Native Invasive Grass Elytrigia atherica. Microorganisms, 2020, 8, 1619.	3.6	7
10	Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.	7.1	113
11	Directional trends in species composition over time can lead to a widespread overemphasis of yearâ€ŧoâ€year asynchrony. Journal of Vegetation Science, 2020, 31, 792-802.	2.2	15
12	Rewilding with large herbivores: Positive direct and delayed effects of carrion on plant and arthropod communities. PLoS ONE, 2020, 15, e0226946.	2.5	21
13	Long-term management is needed for conserving plant diversity in a Wadden Sea salt marsh. Biodiversity and Conservation, 2020, 29, 2329-2341.	2.6	8
14	Wolves and Tree Logs: Landscape-Scale and Fine-Scale Risk Factors Interactively Influence Tree Regeneration. Ecosystems, 2019, 22, 202-212.	3.4	18
15	Small herbivores slow down species loss up to 22 years but only at early successional stage. Journal of Ecology, 2019, 107, 2688-2696.	4.0	8
16	Combined Grazing and Drought Stress Alter the Outcome of Nurse: Beneficiary Interactions in a Semi-arid Ecosystem. Ecosystems, 2019, 22, 1295-1307.	3.4	18
17	Behavioral response of naÃ⁻ve and non-naÃ⁻ve deer to wolf urine. PLoS ONE, 2019, 14, e0223248	2.5	5
18	Reciprocal facilitation between large herbivores and ants in a semi-arid grassland. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181665.	2.6	20

CHRISTIAN SMIT

#	Article	IF	CITATIONS
19	Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution, 2018, 2, 1925-1932.	7.8	140
20	Molecular identification of temperate Cricetidae and Muridae rodent species using fecal samples collected in a natural habitat. Mammal Research, 2018, 63, 379-385.	1.3	3
21	Global-change effects on early-stage decomposition processes in tidal wetlands – implications from a global survey using standardized litter. Biogeosciences, 2018, 15, 3189-3202.	3.3	73
22	Herbivore exclusion promotes a more stochastic plant community assembly in a natural grassland. Ecology, 2017, 98, 961-970.	3.2	33
23	Biotically driven vegetation mosaics in grazing ecosystems: the battle between bioturbation and biocompaction. Ecological Monographs, 2017, 87, 363-378.	5.4	47
24	How does neighbourhood tree species composition affect growth characteristics of oak saplings?. Forest Ecology and Management, 2017, 401, 177-186.	3.2	7
25	Rotation grazing as a conservation management tool: Vegetation changes after six years of application in a salt marsh ecosystem. Agriculture, Ecosystems and Environment, 2017, 246, 361-366.	5.3	12
26	Stronger diversity effects with increased environmental stress: A study of multitrophic interactions between oak, powdery mildew and ladybirds. PLoS ONE, 2017, 12, e0176104.	2.5	6
27	Facultative grazing and bioturbation by macrodetritivores alter saltmarsh plant–plant interactions under stress. Journal of Ecology, 2016, 104, 1149-1157.	4.0	2
28	Effects of grazing management on biodiversity across trophic levels–The importance of livestock species and stocking density in salt marshes. Agriculture, Ecosystems and Environment, 2016, 235, 329-339.	5.3	60
29	Fitness benefits of the fruit fly Rhagoletis alternata on a non-native rose host. Oecologia, 2016, 181, 185-192.	2.0	4
30	The Importance of Coprophagous Macrodetritivores for the Maintenance of Vegetation Heterogeneity in an African Savannah. Ecosystems, 2016, 19, 674-684.	3.4	12
31	Rewilding with large herbivores: Direct effects and edge effects of grazing refuges on plant and invertebrate communities. Agriculture, Ecosystems and Environment, 2016, 234, 81-97.	5.3	13
32	A review and meta-analysis of the enemy release hypothesis in plant–herbivorous insect systems. PeerJ, 2016, 4, e2778.	2.0	69
33	Large herbivores change the direction of interactions within plant communities along a salt marsh stress gradient. Journal of Vegetation Science, 2015, 26, 1159-1170.	2.2	23
34	Effects of livestock species and stocking density on accretion rates in grazed salt marshes. Estuarine, Coastal and Shelf Science, 2015, 152, 109-115.	2.1	24
35	Cyclical succession in grazed ecosystems: The importance of interactions between different-sized herbivores and different-sized predators. Theoretical Population Biology, 2015, 101, 31-39.	1.1	15
36	Rewilding with large herbivores: The importance of grazing refuges for sapling establishment and wood-pasture formation. Biological Conservation, 2015, 182, 134-142.	4.1	50

CHRISTIAN SMIT

#	Article	IF	CITATIONS
37	Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biological Reviews, 2015, 90, 297-313.	10.4	221
38	Phytophagous Insects on Native and Non-Native Host Plants: Combining the Community Approach and the Biogeographical Approach. PLoS ONE, 2015, 10, e0125607.	2.5	10
39	Scaleâ€dependent effects of grazing and topographic heterogeneity on plant species richness in a <scp>D</scp> utch salt marsh ecosystem. Applied Vegetation Science, 2014, 17, 615-624.	1.9	9
40	Drought and grazing combined: Contrasting shifts in plant interactions at species pair and community level. Journal of Arid Environments, 2014, 111, 53-60.	2.4	28
41	Herbivore species and density affect vegetation-structure patchiness in salt marshes. Agriculture, Ecosystems and Environment, 2014, 185, 41-47.	5.3	36
42	How authors can maximise the chance of manuscript acceptance and article visibility. Learned Publishing, 2013, 26, 28-31.	1.7	4
43	Interspecific facilitation and critical transitions in arid ecosystems. Oikos, 2013, 122, 341-347.	2.7	40
44	Coarse woody debris facilitates oak recruitment in BiaÅ,owieża Primeval Forest, Poland. Forest Ecology and Management, 2012, 284, 133-141.	3.2	35
45	The role of rodents in the seed fate of a thorny shrub in an ancient wood pasture. Acta Oecologica, 2011, 37, 133-139.	1.1	9
46	From protégé to nurse plant: establishment of thorny shrubs in grazed temperate woodlands. Journal of Vegetation Science, 2011, 22, 377-386.	2.2	33
47	Seasonal distribution of meadow birds in relation to in-field heterogeneity and management. Agriculture, Ecosystems and Environment, 2011, 142, 161-166.	5.3	22
48	Tree-shrub associations in grazed woodlands: first rodents, then cattle?. Plant Ecology, 2011, 212, 483-493.	1.6	15
49	Effects of cattle and rabbit grazing on clonal expansion of spiny shrubs in wood-pastures. Basic and Applied Ecology, 2010, 11, 685-692.	2.7	23
50	Does the strength of facilitation by nurse shrubs depend on grazing resistance of tree saplings?. Basic and Applied Ecology, 2009, 10, 427-436.	2.7	47
51	Inclusion of biotic stress (consumer pressure) alters predictions from the stress gradient hypothesis. Journal of Ecology, 2009, 97, 1215-1219.	4.0	117
52	Establishment limitation of holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) in a Mediterranean savanna — forest ecosystem. Annals of Forest Science, 2009, 66, 511-511.	2.0	43
53	Facilitation of <i>Quercus ilex</i> recruitment by shrubs in Mediterranean open woodlands. Journal of Vegetation Science, 2008, 19, 193-200.	2.2	122
54	Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient. Oecologia, 2007, 152, 265-273.	2.0	175

CHRISTIAN SMIT

#	Article	IF	CITATIONS
55	Safe for saplings; safe for seeds?. Forest Ecology and Management, 2006, 237, 471-477.	3.2	41
56	Peer Review: Time for a Change?. BioScience, 2006, 56, 712.	4.9	8
57	Unpalatable plants facilitate tree sapling survival in wooded pastures. Journal of Applied Ecology, 2006, 43, 305-312.	4.0	119
58	Safe sites for tree regeneration in wooded pastures: A case of associational resistance?. Journal of Vegetation Science, 2005, 16, 209-214.	2.2	67
59	Safe sites for tree regeneration in wooded pastures: A case of associational resistance?. Journal of Vegetation Science, 2005, 16, 209.	2.2	3